

LEVEL 3

Your survey report

Property address

[REDACTED]
[REDACTED],
[REDACTED],
[REDACTED],
[REDACTED]

Client's name

[REDACTED]

Consultation date (if applicable)

N/A

Inspection date

[REDACTED]

Surveyor's RICS number

[REDACTED]

3

Contents

About the inspection and report	3
Overall opinion	7
About the property	15
Outside the property	21
Inside the property	46
Services	72
Grounds	79
Issues for your legal advisers	88
Risks	92
Energy matters	96
Surveyor's declaration	102
What to do now	104
Description of the RICS Home Survey – Level 3 service and terms of engagement	106
Typical house diagram	112
RICS disclaimer	116

The RICS Home Survey Report Level 3 is reproduced with the permission of the Royal Institution of Chartered Surveyors, which owns the copyright. © 2021 RICS

A

About the inspection and report

This RICS Home Survey – Level 3 has been produced by a surveyor, who has written this report for you to use. If you decide not to act on the advice in this report, you do so at your own risk.

A

About the inspection and report

As agreed, this report will contain the following:

- a physical inspection of the property (see 'The inspection' in section M) and
- a report based on the inspection (see 'The report' in section M).

About the report

We aim to give you professional advice to:

- make a reasoned and informed decision on whether to go ahead with buying the property, or when planning for repairs, maintenance or upgrading the property
- provide detailed advice on condition
- describe the identifiable risk of potential or hidden defects
- propose the most probable cause(s) of the defects, based on the inspection
- where practicable and agreed, provide an estimate of costs and likely timescale for identified repairs and necessary work, and
- make recommendations as to any further actions to take or advice that needs to be obtained before committing to a purchase

Any extra services we provide are not covered by these terms and conditions, and must be covered by a separate contract.

About the inspection

- We carry out a desk-top study and make oral enquiries for information about matters affecting the property.
- We carefully and thoroughly inspect the property, using reasonable efforts to see as much of it as is physically accessible. Where this is not possible, an explanation will be provided.
- We visually inspect roofs, chimneys and other surfaces on the outside of the building from ground level and, if necessary, from neighbouring public property and with the help of binoculars.
- We inspect the roof structure from inside the roof space if there is access. We examine floor surfaces and under-floor spaces, so far as there is safe access and with permission from the owner. We are not able to assess the condition of the inside of any chimney, boiler or other flues.
- If we are concerned about parts of the property that the inspection cannot cover, the report will tell you about any further investigations that are needed.
- Where practicable and agreed, we report on the cost of any work for identified repairs and make recommendations on how these repairs should be carried out. Some maintenance and repairs that we suggest may be expensive.
- We inspect the inside and outside of the main building and all permanent outbuildings. We also inspect the parts of the electricity, gas/oil, water, heating, drainage and other services that can be seen, but these are not tested other than normal operation in everyday use.
- To help describe the condition of the home, we give condition ratings to the main parts (the 'elements') of the building, garage, and some parts outside. Some elements can be made up of several different parts.
- In the element boxes in sections D, E, F and G, we describe the part that has the worst condition rating first and then outline the condition of the other part.

Reminder

Please refer to your **Terms and Conditions**, that were sent to you at the point you (the client) confirmed your instructions to us (the firm), for a full list of exclusions.

A

About the inspection

Surveyor's name

[REDACTED]

Surveyor's RICS number

[REDACTED]

Company name

IGL Surveying Ltd

Date of the inspection

[REDACTED]

Report reference number

[REDACTED]

Related party disclosure

I can confirm that I have no links with either party involved with this transaction

Full address and postcode of the property

[REDACTED],
[REDACTED],
[REDACTED],
[REDACTED]

Weather conditions when the inspection took place

The weather was dry and clear following a period of wet weather in the 24 hours preceding. Temperatures were in the region of 9°C at the time of the inspection.

Status of the property when the inspection took place

The property was occupied at the time of the inspection. Furniture, decorative finishes and floor coverings remained in place throughout.

B

Overall opinion

This section provides our overall opinion of the property, highlights any areas of concern and summarises the condition ratings of the different elements of the property. Individual elements of the property have been rated to indicate any defects, and have been grouped by the urgency of any required maintenance. If an element is made up of a number of different parts (for example, a pitched roof to the main building and a flat roof to an extension), only the part in the worst condition is shown here.

Important note

To get a balanced impression of the property, we strongly recommend that you read all sections of the report, in particular section L, *What to do now*, and discuss this with us if required.

Summary of condition ratings

Overall opinion of property

The property is a Grade II listed farmhouse understood to date back to the Georgian period and is believed to have been constructed in the mid-to-late 1700's.

The layout of the farmhouse and neighbouring dwellings, which would have once formed the agricultural buildings associated with the farm, is typical of what would have been a linear "longhouse" farm. These were very common styles for smaller farmsteads found in upland areas such as this up to the Victorian era.

The layout, together with some features (e.g. chimney positions) and construction elements are indicative of the 18th century style, while other elements (e.g. external stonework) would typically be more common in later eras. From this, I feel it is evident that the farmhouse has undergone numerous alterations and adaptations throughout its history.

The most recent and significant alteration is understood to have taken place in the last 25 years as the farmhouse was derelict at the turn of the millennium. Significant work has been undertaken to re-establish the farmhouse as a home since the early 2000s.

Due to the listed status of the building, work undertaken has been sympathetic to the history of the building, retaining as many of the original features as possible, while also ensuring that any alterations are relatively simple to remove to aid any future desires to restore the building back to its original layout.

Although works undertaken appear to be of a high standard, there are shortfalls in energy efficiency which should be considered. The property falls significantly short of modern day insulation standards. This is likely due to a combination of improved standards since the works were undertaken to the property and/or the need to preserve the historical aspect of the building which may have allowed for a reduction in insulation levels to be accepted by Building Control at the time works were undertaken. This results in some issues such as dampness to internal surfaces of external walls, increasing dampness to window/door openings, draughty construction and increased energy usage costs. Methods of living and options for improving the energy efficiency of the building are considered below.

The property features a traditional pitched roof covered with stone slates. This is specifically referenced on the description provided for the listing of the building and is therefore likely to require any repairs to be undertaken in a sympathetic way. This may result in repairs being more costly than if considered to a more modern property where modern, cheaper materials could be used. Signs of water ingress were evident within the roof space. Repairs to the roof line were also evident which may have helped to reduce the issues, but further repairs are recommended below.

The first floor construction is of a suspended timber nature, with supporting beams exposed at ground floor level. Creaking floorboards and some flexing of the floor was identified in some rooms, particularly the master bedroom and smaller front bedrooms. This may simply be due to the smaller size of timber supporting elements, or different methods of construction compared to modern standards. Or the flexing may indicate further issues with the floor construction which would require further investigation to determine.

B

Summary of condition ratings

Where elements such as this are found to be free of defects within older properties, this movement and creaking of floorboards etc. is instead considered to be characterful. I recommend that you consider this, as if the preference is to occupy a property free from such noises/movement, an older, historical property of this style is unlikely to achieve this requirement.

Elements such as doors and windows have been preserved in traditional materials (timber) and in a traditional style. However, improvements have been made to make these elements to make them more thermally efficient. Despite this, the traditional materials used will require regular ongoing maintenance through redecoration to preserve them. This is a good example of the ongoing maintenance responsibility which a property of this age will require. Further such examples will also be considered below.

The property features a small cellar which is found below the external ground level. The cellar is typical of the age of the property and would have been built with traditional methods. This means that it lacks any form of tanking to prevent water ingress from the surrounding ground. It was evident that water drains into the cellar through the walls and floor. The cellar could therefore not be considered for habitable use in its current condition. Work could be undertaken to make the room habitable if desired, but the costs for this are likely to be significant.

B

Summary of condition ratings

To determine the condition of the property, we assess the main parts (the 'elements') of the building, garage and some outside areas. These elements are rated on the urgency of maintenance needed, ranging from 'very urgent' to 'no issues recorded'.

Documents we may suggest you request before you sign contracts

There are documents associated with the following elements. Check these documents have been supplied by your solicitor before exchanging contracts.

Element no.	Document name	Received
	Building Regulations approval for all previous works associated with the renovation of the property	
D2	Building Regulations approval for the previous roof covering replacement	
D5	FENSA Certificates for windows to confirm they comply with Building Regulations. Copies of any warranties which may be available for windows. Confirmation that uPVC framed windows have been approved for installation by the local planning department.	
E1	Building Regulations / planning approval for the conversion of the roof void	
F1	NICEIC Electrical Safety Report (where available)	
F2	Gas Safe Report / Building Regulations approval for the installation of the gas appliances (LPG tanks, oven and boiler)	
F6	Drainage arrangements should be confirmed. There is a potential requirement for need for access to neighbouring land to service drainage. If this is the case, this right of access should be confirmed as being present within the title documents of the property if required	

B

Summary of condition ratings

3

Elements that require urgent attention

These elements have defects that are serious and/or need to be repaired, replaced or investigated urgently. Failure to do so could risk serious safety issues or severe long-term damage to your property.

Element no.	Element name	Comments (if applicable)
D1	Chimney stacks	Repointing to chimney stacks required with traditional lime mortars. Ventilation recommended to unused flues, and potentially unsafe stone caps removed.
D2	Roof coverings	Due to numerous repairs having been identified as being required to the roof coverings, combined with inappropriate underlay used, our recommendation is that the roof covering be renewed in full to the main property.
E1	Roof structure	Ventilation improvements required in line with above.
E7	Woodwork	Loose balustrade to stairs requires historic repair. Other repairs to resolve warped doors and remove rotten timber above staircase are considered less serious.
F1	Electricity	NICEIC electrical test for electrical installation is overdue
F2	Gas/oil	Gas Safe Engineer to ensure compliance of gas installation
F4	Heating	Gas Safe Engineer to ensure compliance of gas installation
G1	Garage	Lack of finish to rear wall may be in contradiction to planning approval. A rendered finish should be applied with consent for this obtained from the local authority. Completion of door threshold required.
G3	Other	Trees with significant lean could be dangerous and should be assessed by a tree surgeon / arboriculturist

B

Summary of condition ratings

2

Elements that require attention but are not serious or urgent

These elements have defects that need repairing or replacing, but are not considered to be either serious or urgent. These elements must also be maintained in the normal way

Element no.	Element name	Comments (if applicable)
D4	Main walls	Minor repair needed to repair open joint in masonry to rear elevation
D6	Outside doors	Repair or replacement of kitchen door lock required together with decoration of door
E6	Walls and partitions	Potentially unsafe glass to WC. Typical repairs of plastering required in some places
E4	Floors	Uneven ground floor to corridor to be monitored. Bounce identified to some first floor areas requiring further investigation.
E5	Fireplaces, chimney breasts and flues	Check compliance of log burning stove and provide ventilation to flues as above
E8	Bathroom fittings	Repairs required to Bedroom 2 en-suite WC
F6	Drainage	Drainage route could not be confirmed. Seek confirmation of drainage arrangements from your legal adviser
G2	Permanent outbuildings and other structures	Further investigation required to determine the purpose of the ventilation points below the BBQ hut

B

Summary of condition ratings

1

Elements with no current issues

No repair is currently needed. The elements listed here must be maintained in the normal way.

Element no.	Element name	Comments (if applicable)
D3	Rainwater pipes and gutters	Typical clearing of gutters required on a regular basis
D5	Windows	Typical redecoration and maintenance of ironmongery required
D8	Other joinery and finishes	Typical redecoration and maintenance required
E2	Ceilings	Typical redecoration and maintenance required
E6	Built-in fittings	
E9	Other	Checking and clearing of cellar drain needed – typical maintenance. Other improvements would be considered optional improvements
F5	Water heating	Recommend you confirm whether an electric immersion heater is provided to the hot water cylinder

NI

Elements not inspected Summary of repairs and cost guidance

We carry out a visual inspection, so a number of elements may not have been inspected. These are listed here.

Element no.	Element name
F6	Below ground drainage and route could not be observed due to lack of further access points
F3	The mains incoming water supply was not observed due to being hidden by owner belongings
G2	The BBQ Hut to the side of the garage was not inspected as part of this survey

B

Summary of condition ratings

Summary of repairs and cost guidance

Costs given are estimated based on recent works of a similar nature undertaken elsewhere, or from Construction price books. Formal quotations should be obtained prior to making a legal commitment to purchase the property.

Repairs	Cost guidance (optional - all excl' VAT)
Taking off existing stone roof coverings, re-grading, providing replacement reclaimed slates for unusable units, new low resistance underlay, battens and re-slating. Re-bedding and pointing of parapet copings.	£35,000.00 – <i>Note that this is specialist work and costs may vary significantly depending upon reusable slates and condition of elements once exposed.</i>
Repoint chimney stacks in full with traditional lime mortar – assumed to be undertaken with re-roofing	£1,050.00
Scaffolding (full)	£8,000.00
Bat survey	£400.00
Repair to staircase balustrading	<i>Unknown – Advise to seek quotations from joiners who specialise in heritage joinery repairs</i>
CCTV survey and clearing of drain to cellar	£100.00
Repair/replace leaking waste pipe to kitchen	£125.00
Rendered finish to rear elevation of garage	£1,350.00
Door threshold required to garage door	£225.00
Repair broken slates to garage roof (5No.)	£450.00
Tree surgeon attendance to reduce trees (2No.)	£400.00

Further investigations

Further investigations should be carried out before making a legal commitment to purchase the property.

To determine the route of drainage from the property and to determine if there is any serviceable element constructed below the BBQ hut.

C

About the property

This section includes:

- About the property
- Energy efficiency
- Location and facilities

C

About the property

Type of property

The property is a four bedroom farmhouse located in a rural location with neighbouring properties formed within what would have been associated farm buildings.

Approximate year the property was built

1750

Approximate year the property was extended

N/A

Approximate year the property was converted

2003

Information relevant to flats and maisonettes

N/A

Construction

The property is constructed from traditional sandstone walls below a stone slate pitched roof finish.

The gable walls extend up above the roof line and are covered with stone copings.

There are three chimney stacks rising up above the roof line, one to each gable wall and another to the central ridge line. These are all formed with stone, although of varying types of stone.

Internally, the roof is supported by traditional timber rafters and purlins, with intermediate support offered by a king-post timber truss and intermediate load-bearing walls. Internal walls are predominately load-bearing stone walls, although timber stud partitions have been formed to adapt the property to its current layout.

The roof space has been partially adapted to create additional space, with the remaining roof void separated by a timber stud partition.

The first floor of the property is formed with suspended timber construction, with hardwood beams offering intermediate support to ceiling joists from below. Many of the timber floor elements are exposed to the underside at ground floor level.

The ground floor is of a solid floor construction, with various hardwood or tiled finishes laid over.

The cellar is again formed with stone walls with a barrel vault style ceiling supporting the floor above. The floor of the cellar is finished with stone flags which are expected to be laid directly on the ground below.

C

About the property

Accommodation

	Living rooms	Bed-rooms	Bath or shower	Separate toilet	Kitchen	Utility room	Conser-vatory	Other
Lower ground								1
Ground	2			1	1	1		
First		4	3					
Roof space								2

Means of escape

Due to the historical nature of the window styles, the property is not offered with emergency escape windows to any rooms. The means of escape from the property is only via the external doors to the front elevation, one of which is to the central circulation area, the other is to the kitchen.

In the event of a fire, or similar emergency, it may be difficult to achieve safe access to either of these escape routes, particularly from first floor level.

C

Energy efficiency

We are advised that the property's current energy performance, as recorded in the EPC, is as stated below.

We have checked for any obvious discrepancies between the EPC and the subject property, and the implications are explained to you.

We will advise on the appropriateness of any energy improvements recommended by the EPC.

Energy efficiency rating

F

Issues relating to the energy efficiency rating

The current EPC expires on [REDACTED]. Assumptions made within some of the EPC report are understood to be correct (e.g. no external wall insulation), however, insulation was seen within the roof void of the property which may offer an improvement to the EPC over the stated rating.

Mains services

A marked box shows that the relevant mains service is present.

Gas

Electric

Water

Drainage

Central heating

Gas

Electric

Solid Fuel

Oil

None

Other services or energy sources (including feed-in tariffs)

The property is heated via LPG gas from external storage tanks within the garden. The property is not connected to the main gas network. There is also a log burning stove present within one of the living rooms providing a secondary heating source to the property.

Other energy matters

N/A

C

Location and Facilities

Grounds

The property is located within a rural location, with generous garden space to the north and east of the property. A smaller, raised garden is present to the front, south facing, side of the building which overlooks the shared access road. The garden is separated from the access road by a stone boundary wall.

The grounds of the property are separated from the fields to the north by a timber post and wire fence.

The eastern boundary is also formed with a timber post and wire fence. This separates the plot from an access route into the field to the north. This access track runs between this plot and a neighbouring house to the field.

Between [REDACTED] and the eastern boundary is a generous driveway, sizeable enough for multiple vehicles and a detached double garage which has been constructed in the last 15 years.

There are well established trees growing within the grounds.

Location

The property is located within a rural location to the north of [REDACTED] and South of [REDACTED].

The property is located around 1 mile north of the village of [REDACTED] and around 1.7 miles south of the village of [REDACTED].

The area is popular for tourists who often visit the [REDACTED] area to enjoy walking in the countryside or to explore the history of the area.

The property is relatively secluded from the more busy areas though, being hidden around 0.2 miles off the main public road.

Facilities

The rural location means there are little public facilities in the area. There is a regular bus route which runs along [REDACTED], but the nearest bus stop is in the village of [REDACTED], around 0.5 mi away.

[REDACTED] village offers a small village primary school, while the villages of [REDACTED] and [REDACTED] feature a number of public houses. [REDACTED] also has a small post office/village shop to offer as well as another primary school.

Local environment

We found no evidence that the property has been affected by flooding, except for the water ingress described later in this report which was identified within the cellar. A search on the Environment Agency flood risk assessment website revealed that the property is considered to be at a very low risk of flooding from all factors. However, further, more detailed searches may be conducted by your legal advisors to confirm this further.

The UK Radon website map shows that the property is located in the border of between a 1% - 3% maximum radon potential. This percentage is the rating given to define the chance as to whether a property is likely to have radon gas levels above the national action limit. The map shows that this is at the lowest end of this risk potential. However, further tests would need to be conducted in the property over a period of time to confirm the exact levels of radon. For further information on radon within the UK, please visit

C

Location and Facilities

www.ukradon.org.

A search of the Mining Remediation Authority website confirms that the property is within a Coal Mining Reporting Area but is on the outskirts of this area. The map does not highlight any past shallow mines, surface resources of coal, past mining, abandoned mines or mine entry points within the vicinity of the area. Nor does it state that the property is within an area considered to be 'development high risk'. We would recommend that your legal advisors conduct more in-depth searches to confirm the potential risk from previous mining within the vicinity of the property, but based on the information available online we would consider the risk to be very low.

Other local factors

At the time of our survey, we were not aware of any other additional local factors, for example, significant external noise or any other nuisances. We inspected the property during the day, and due to the rural location the noise levels were very low. It was possible to hear the children playing outside the nearby school around 0.5mi away. Agricultural practices in the surrounding fields and areas may create noise and smells during certain times of the year which may be somewhat disruptive to the enjoyment of the property, particularly the garden.

Your legal adviser should make enquiries with the existing vendor to determine whether any previous problems or disputes have occurred with neighbours during the time of their ownership.

There are a number of public footpaths around the property, most notably; extending along the end of the access road, and another footpath provides access to the field to the north via the gated access track behind the garage. These are publics rights of way and access must be maintained to them at all times. You should ask your Legal Adviser to provide a map of local footpaths so that you can familiarise yourself with their locations and the potential for pedestrians to use these routes at any time of day or night given the popularity of the area for walkers. During our inspection, only one pedestrian was witnessed walking past the property along one of these routes, but greater numbers of walkers may pass by during evenings, weekends and holidays.

The property is located in the [REDACTED] Area of Outstanding Natural Beauty (AONB) which aims to help protect the area under the Countryside and Rights of Way Act 2000. This may place restrictions on certain developments in the area, however the listed status of the building in question is likely to be more restrictive to future developments on the site than the AONB status of the area.

The property is not within a conservation area.

D

Outside the property

Outside the property

Limitations on the inspection

The property was inspected from ground level only, although a drone was used to assist in making observations at roof level.

D1 Chimney stacks

1 2 3 NI

The property features three separate chimney stacks, all situated to the central ridge line of the roof. There is one chimney stack constructed to the ridge of each gable wall the left (western) gable forming the party wall between this property and the neighbouring property within the converted barn. The third chimney stack is then positioned to the ridge of the roof, offset to the right of the centre line of the building (Figure 1).

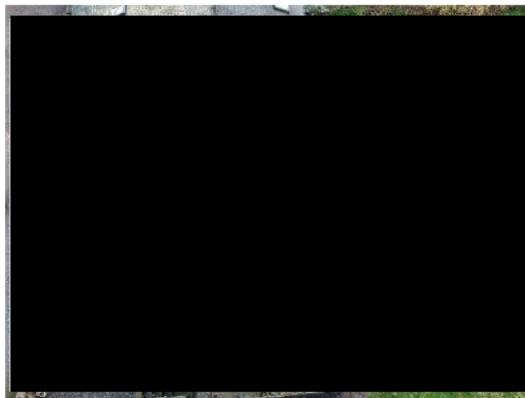


Figure 1 - Aerial roof image

3

All three chimney stacks once provided two flue terminals each, but one of the flue terminals on each stack has since been blocked off. All are formed with stone with a projecting stone coping and cement flaunching used to hold flue covers/chimney pots in place.

The chimney stacks are constructed as a continuation of the walls below with the flues having been built within the walls. This results in some of the internal chimney breasts not been observable at first floor level (e.g. above the dining room fireplace and to bedroom 2).

1. Looking at the chimney stacks left to right; the first chimney stack (to the party wall) has evidently been reconstructed in the past as this is now formed from more uniformed, smooth faced stone that is less weathered than the stone to the other two stacks (Figure 3)

Outside the property

Figure 3 - Left chimney stack with contrasting stone

The chimney stack features a single clay pot to the front flue which serves the log burning stove within the reception room. The rear flue has been closed off by a square stone flag laid over the flue and bedded in mortar. It is expected that this would have originally served an open fireplace within Bedroom 1. The closed flue is not ventilated from inside or at the external capping. The lack of ventilation within a chimney flue can result in condensation forming inside the flue. The condensation is then absorbed by the surrounding masonry and can be drawn through to the outer face of the stone together with salts and soot from previous fires, leaving dark damp stains to walls or chimney breasts. Such dark stains were evident within the roof space below this chimney stack, with contrasting cleaner masonry in line with the flue which continues to serve the log burning stove (Figure 2). The use of the log-burning stove will help to dry the masonry along the line of the flue, thereby preventing this staining.

Figure 2 - Party wall/gable wall from within roof void

D

Outside the property

For this reason, we would recommend that all disused flues be ventilated from both the top and bottom. This could be provided by adjustable vents fitted to blocked off fireplaces internally. Externally, the stone caps would need to be removed and a clay ventilated chimney cap instead fitted over the flues. These would need to be provided in keeping with the historical aesthetic of the building. The use of reclaimed clay chimney pots, either in a Bishop or Crown style would match existing pots and would likely be acceptable to the conservation officer. The chimneys should then be capped with a removable cap which allows ventilation into the flue while preventing birds/water ingress from above.

It could not be determined if the flue serving the log burning stove has been fitted with a liner or not. It is possible that to retain the external aesthetic, a flue liner has been installed up to the top of the stack and closed with a top plate instead of having the liner be clamped to the top of the chimney pot which would introduce a modern aesthetic to the chimney and may not be considered in keeping with the listed status. However, it may also be possible that the log burning stove have been fitted without a liner, instead relying only on the original stone flue construction where it would be found to be in a sound and safe condition at the time the log burner was installed. We would recommend that your legal adviser obtain the HETAS certificate for the installation of the log burning stove which will confirm the compliance with the Building Regulations for this installation.

The western face of this first chimney stack was seen to have more weathered and recessed mortar pointing and so we would recommend allowances be made to repoint this chimney stack within the next 5 years. However, to access the western face of the stack, scaffolding would have to be installed over the neighbouring roof for which notice would need to be given to the neighbouring owner(s) under the Party Wall etc. Act 1996.

2. The central chimney stack has an aged, buff coloured square chimney pot to the rear flue. This has been covered with a large stone slab, topped with concrete blocks set in mortar (Figure 4).

Figure 4 - Central Chimney Stack

Outside the property

The chimney pot was seen to have surface cracking evident. The front flue of this stack has been capped and covered with mortar. This chimney serves the fireplace within the Dining Room and based on the evidence available, is also believed to have once served a fireplace within the cellar, most likely for cooking or additional heating. The flue within the cellar remains open to the underside but has been capped off with stone at ground floor level. It is not possible to determine which flue serves which fireplace. Given the position of the fireplaces, we would assume that the capped, front flue serves the fireplace of the Dining Room. This has again been capped off internally with cementitious boards. Gaps in the boards allow for ventilation of this flue from within, but again, no ventilation is provided at roof level.

It may be preferable to install an additional log burning stove within this room. If this were desired, the flue should be lined in accordance with the Building Regulations, and a new chimney pot would be required at roof level due to the age of the existing it would not be considered useable for a new appliance. This would require the existing capping/chimney pot to be removed and replaced.

The stone capping of the chimney pot appears to be precariously balanced on the pot with minimal weight to retain it. The large overhang would, in our opinion, make it susceptible to wind uplift. However, it has evidently remained in place for many years and so is could be expected to continue to do so. If the mortar bed of the ballast were to deteriorate, there could be a risk of the stone and blocks on top falling from the roof. If the flue were to remain unused, we would therefore consider taking the unused chimney pot away and capping the unused flue with a ventilated cap.

The mortar cover of the front flue ('flaunching') of this stack was seen to be cracking due to age. We would recommend that the flaunching of the chimney be renewed when access is next made to the chimney/roof.

The stonework of the chimney is evidently original but has been repointed in patches, with contrasting mortar mixes used. It appears that when repairs have been made to the roof ridge, excess mortar has been used on the left side of the chimney. Despite this, the mortar joints are heavily weathered to the left, western face of the chimney (Figure 5).

Figure 5 - Weathered mortar to central chimney stack

With recessed joints in the stone noted. Loose and friable mortar was also seen to the front and rear of the chimney and therefore we recommend that the chimney stack be repointed as soon as possible to prevent water ingress through the chimney.

Outside the property

3. The third chimney stack to the right is formed as a continuation of the eastern gable wall. This is again formed from original stonework with stone copings proving a weathering projection to the top of the stack (Figure 6)

Figure 6 - Right, eastern, chimney stack

The chimney is provided with a 'crown' style clay chimney pot to the front flue with a stone cover over the rear of the chimney. The chimney would have originally served the fire place within the Lounge, however, this has again been blocked off internally and a cap has been added within the chimney pot to close the flue at roof level (Figure 7).

It is unclear if there is a second flue within this chimney stack. We would assume that the chimney would have served a second fireplace at first floor level, most likely within Bedroom 2, but no fireplace remains. Equally, the position of the window opening in the gable wall at second floor level would create a sharp angle for the flue to follow. It is unclear if this window opening has been formed at a later date but evidence of newer pointing above the opening would suggest it potentially has been formed interrupting the run of the rear flue.

Again, it may be preferable to install a log burning stove within the Lounge and if so, the flue would need to be cleared, and lined. Although it may be possible to re-use the existing chimney pot at roof level, to prevent the addition of a modern cowl to connect to a new liner, it would be necessary to remove the pot to fix the flue liner below the pot with a top plate. The chimney pot would then need to be reinstated.

It was noted that the cement flaunching around the pot is cracking and friable. If left in this condition, the flaunching will begin to fall away. It is recommended that this be replaced at the earliest opportunity.

Outside the property

Figure 7 – Eastern most chimney stack

The joints in the stone of this chimney stack have been finished with 'strap pointing' – the application of modern cement based mortar over existing mortars. This was a common repair to older buildings but can be very damaging to masonry due to the strength of the cement mortar compared to the stone and the way in which the cement mortar traps moisture within the stone. The mortar was seen to be friable and breaking away in some locations, particularly again to the exposed western face (Figure 6). We would again recommend that the mortar of this chimney stack be raked out and the stack repointed in full.

Repointing to all chimney stacks should be undertaken using traditional lime mortars. The exact mix / colour should be agreed with the local conservation officer, but a natural hydraulic lime (NHL) mortar is likely to be most suitable for this position. The use of a 3.5 NHL lime is most common, but a more resistant 5.0 NHL lime could also be considered for greater resistance to the heavy weathering the chimney clearly receives. The use of cement based mortars should be avoided, as they prevent any moisture within the stone from freely evaporating allowing the stone to dry. This can result in the stonework being damaged by frost.

The junction of the roof coverings to each of the three chimney stacks are weathered with lead soakaways and cover flashings. The flashings were generally seen to be in a reasonable condition except for the front corner of the right chimney stack, where the cover flashing was seen to be coming away. This should be battened back to the stone then wedged and pointed into the chimney stack when repointing.

Outside the property

D2 Roof coverings

The property is covered by traditional stone slates laid in a diminishing course fashion. This means that the slates get smaller closer to the ridge of the roof. A small number of broken slates were identified to both the front and rear roof slopes (3No. to the front slope and 2No. broken slates to the rear slope). These should be replaced as soon as possible with reclaimed stone slates of similar sizes.

3

Figure 8 - Front roof slope

To the front roof slope, modern, adhesive flashings have been installed over some slates, presumably in an attempt to resolve issues with leaks due to slipped slates or where larger gaps are present between slates (Figure 8). No evidence of leaks to these positions were identified within the roof void, but the repairs would not be considered in keeping with the traditional roof finish.

To the rear slope, the roof line drops slightly towards the parapet. This is due to a variation in height between the roof slating battens and the gable wall below this area. The larger gaps in the slates at this position will result in an increased potential for water ingress to occur, particularly from wind driven rain.

Figure 9 - Rear roof slope at western parapet

It was not possible to access the roof structure below this area, but black staining could be seen to the inside face of the wall within the roof space which would be indicative of dampness to the wall which may be due to wind driven rain entering through the uneven slates above this point. We would recommend that if the roof covering is renewed, wall height be increased below and battens extended up to the parapet to allow slates to be reinstalled to a straight line.

D

Outside the property

To the rear slope, the stone slate to the right of the central chimney stack was seen to have a mortar fill below.

Figure 10 - Mortar fill below slate to rear slope

This is due to the large profile of the slate covering two courses resulting in a gap below the slate created by the next course alongside. The mortar fill below the slate had a single crack and so it would be recommended that this be renewed when access is next made for other repairs on the roof.

The ridge is finished with natural stone angled ridge tiles supported on a mortar bed. Ridge tiles are weathered through age but in a reasonable condition. The mortar bed was seen to be cracking and friable in some areas. Contrasting mortar to the small ridge tile to the left of the central chimney stack indicated that this tile had been recently repointed (Figure 5 / Figure 8). This is believed to have been completed in an attempt to resolve issues of water ingress within the roof void, seen above the doorway in the second floor Storage room. Although this may have helped to reduce the issues of water ingress, the weathered mortar to the chimney stack alongside is also likely to be contributing to this. The mortar used to repair the ridge was also seen to be cracking again. Failing mortar beds to ridge tiles accelerates the failure of the mortar and increases the risk of water ingress. The use of modern cement based mortar as seen to the repaired area should be avoided due to the strength of the mortar putting the stone work at risk of further damage. We would recommend that the ridge tiles be lifted, cleaned of mortar and re-bed onto a new lime based mortar bed within the next 5 years.

Within the roof space, it was possible to see that the stone slates have been installed over a modern Visqueen-type underlay to the rear roof slope and a bituminous underlay below the front roof slope. From this, we would estimate that roof coverings were replaced within the last 25 years. We recommend that your legal adviser obtain confirmation that listed building consent and Building Regulations approval was sought for this work.

Outside the property

Figure 11 - Visqueen underlay over rafters

The underlay was seen to be hanging loosely within the roof space towards the western gable below the rear roof slope (Figure 11). Although no evidence of water ingress could be seen to the ceiling or bedroom wall below this point, the loose underlay would allow any water passing beyond the slates to drain into the roof void. Consideration should be given to repairing this affected area of the roof as soon as possible by lifting off slates above, then repairing, or replacing the affected section of underlay.

Although this repair and others mentioned could be undertaken over the next few years as and when further symptoms worsen, we note that the underlay used is not a breathable membrane and will not allow air or water vapour to pass through. The roof space should therefore be ventilated to prevent the build up of condensation forming. Condensation forms as warmer, humid air from within the property rises into the colder roof space.

The traditional construction of a stone slate roof covering does not feature modern ventilation methods at the eaves or ridge. Traditionally, air would have been able to pass through the slates to ventilate the roof space, allowing humid air within the roof space to be replaced with fresh air. The underlay installed prevents this. Without additional ventilation being introduced, this encourages condensation to form. Evidence of this could be seen in the form of mould to the underside of the underlay and roof joinery within the roof void. Over time this puts the roof joinery at risk of rotting. We would therefore recommend that the roof be ventilated. It would not be possible to do this using modern methods (such as ventilated ridges or ventilation tiles) while preserving the historical appearance of the roof.

Outside the property

In our opinion, the most suitable, and cost effective alternative to making numerous repairs would be to lift the existing roof coverings, retain and reuse slates where possible and recover the roof with a modern, air & vapour permeable (LR – Low Resistance) membrane. This should be installed with a reasonable 5-10mm drape between each rafter to allow any water passing beyond the slates to drain into gutters. This type of underlay would allow air passing between stone slates to ventilate the roof space. Retained slates should then be reinstated in the same diminishing course pattern onto new battens. Replacement reclaimed matching stone slates should be provided where required to replace damaged or broken units. This would allow other repairs to ridges and chimneys to be completed at the same time.

The roof line is finished at each side with a low parapet formed from a continuation of the gable walls. The parapets are covered by traditional flat stone copings. These provide a weathered overhang to protect the outside face of the gable walls and are set onto a mortar bed with stone kneelers provided to three of the lower corners of the parapet walls.

Figure 12 - Stone kneeler to front right roof parapet

Outside the property

The front left corner is finished instead with a stainless steel angle bracket. The right rear parapet is also supported with a stainless steel angle iron bedded below the lowest coping on the kneeler.

These brackets and the stone kneelers help to resist the vertical pressure of the coping stones. The stone kneelers were all eroded due to weathering over time but continued to serve their purpose. These are likely to be original and any works affecting the kneelers should be done so with extreme care due to their fragile state. The coping over the rear, eastern, kneeler was noted to be broken.

The parapets to the left of the building (over the western, party wall) were seen to be offset, with the front parapet being formed over the inner face of the gable wall, while the rear parapet appeared to be a continuation of the outer face. This is expected to be an original design.

Mortar fillets weathered the abutment between the roof slope and the inside face of the parapets (Figure 12 & Figure 13). Mortar fillets were again of contrasting materials suggesting that some have been repointed more recently, again in what looked to be modern cement based mortar.

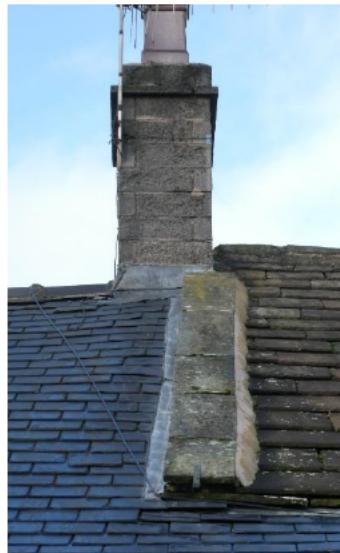


Figure 13 - Front left parapet with angle bracket support

Leadwork has been fitted over joints in the copings to the front right parapet. This repair is often undertaken to try and prevent water ingress through the joints in the copings. Combined with the repaired mortar fillet to the inside face indicates previous issues of water ingress along the line of this parapet. The outside face of this parapet has been rendered. The rendering was seen to be in a reasonable condition.

Other parapet coping joints were seen to be weathered, particularly to the rear western parapet. This may also make this wall susceptible to water ingress. When roof coverings are replaced, we would recommend that copings be lifted and set onto a new layer of damp proof course (DPC), or leadwork, with high durability lime mortar used to re-bed the coping stones onto. The use of mechanical fixings should also be considered between copings to help retain them in place, although the use of traditional dowel fixings may cause damage to the copings and so should be avoided. The copings should then be repointed in lime mortar and the same mortar used to weather the abutment between the roof coverings and the parapets.

D

Outside the property

The lead flashings to the outside of the western parapet should be re-dressed over up to and under the new DPC to form a weatherproof detail along this line. Rendering should be renewed to the eastern gable where disturbed.

Again, we would recommend that parapets be repaired in line with the roof covering renewal.

Although the suggested work would not impact upon the external appearance of the building, significantly, it would result in new materials being used and historical elements being put at risk (e.g. eroded stone kneelers). Listed building consent should therefore be sought from the local planning department prior to proceeding. There is currently a fee concession for planning approval for works required to listed buildings, however details of the proposed works would be required in order to submit a valid application to the Local Authority.

Renewing the roof covering will be specialised work and obtaining likely costs from contractors may be difficult until they visit site. Equally, this type of work is not “standard” and so book prices may not be reflective of the actual cost, especially given the labour intensive nature of the work required. We have tried to estimate the cost in the above table but regret costs could some in to be greater than this once works commence. We hope that the above cost would be assistive in negotiating on the cost of the property although for more accurate estimates of the work you may wish to seek quotes from conservation specialist contractors prior to completing on the purchase of the property.

The lower pitched roof over Bedroom 3 was seen to be again formed from natural stone slates below a stone ridge. The rear slope has a covering of moss due to overhanging trees, preventing clear observation of all the slates. Despite this, at least two broken slates could be seen to the rear slope and a further five broken slates could be seen to the front slope. It is recommended that these damaged slates be replaced as soon as possible. The moss could be carefully cleaned from the slates to prevent accelerated weathering of the slates, but we would only recommend that this be done with a stiff brush. High pressure water should not be used to clean the moss.

The ridge of the lower roof was again seen to be stone ridge tiles in a cement based mortar bed. Although the mortar bed was seen to be in a reasonable condition, we would recommend that when this needs to be renewed in the future, the ridge tiles be bed onto lime mortar.

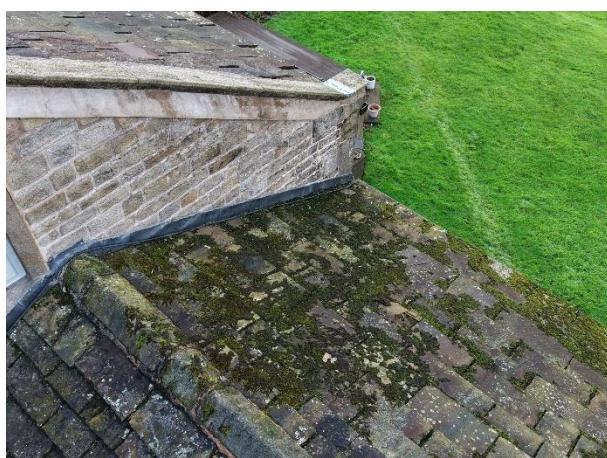


Figure 14 - Low level pitched roof over Bedroom 3

D

Outside the property

The abutment of this roof to the gable wall has been weathered with a lead flashing which has been sealed to the wall with a flexible sealant. This prevents the external wall being damaged by cutting the flashing into the wall and may have been a requirement to conserve the historical masonry. The sealant may require more regular renewal than if the leadwork were wedged and pointed into the wall and so this should be considered for the future maintenance of the roof.

The roof over the Kitchen/Bedroom 3 was seen to be ventilated at the eaves, with a continuous ventilation strip noted behind the timber fascias. It was not possible to determine the depth of any insulation present, but the ventilation provided would indicate that the roof has been replaced in accordance with Building Regulations. We would recommend that your legal adviser seek copies of Building Regulations approval for this work where available.

The angled verge (to the edge) of this roof has been finished with a cement mortar fillet. This was seen to be in a reasonable condition.

Outside the property

D3 Rainwater pipes and gutters

The roof is served by aluminium gutters with an Ogee profile. These are supported on metal brackets above original stone gutter corbels. The stone corbels would have once supported timber guttering but now no longer serve a purpose other than to preserve the historical appearance of the building. These are specifically mentioned in the listed building description.

Figure 15 - Aluminium front gutter

1

The gutters discharge into aluminium circular downpipes which in turn discharge into uPVC gullies at ground level. The downpipe to the rear of the kitchen projection connects directly to an underground drain.

Matching aluminium gutters also serve the low level roof over the kitchen/Bedroom 3 projection. These are fitted to timber fascia boards.

Figure 16 - Aluminium gutters to low level roof

The garage is provided with square profile uPVC gutter which discharges into square uPVC downpipes. These again discharge into uPVC drainage gullies at ground level.

Rainwater goods to all locations were seen to be in a reasonable condition. Some algae growth and staining to the outside of the gutters indicated overflowing of the gutters. Gutters were seen to be partially blocked, or fully blocked in the case of the gutters to the garage. Blockages will restrict the flow of water to the outlets during heavy downpours causing intermittent overflowing. As it was not raining at the time of the inspection, no leaks or overflowing of gutters were observed.

D

Outside the property

We would recommend that gutters be cleared of debris at the earliest opportunity and this maintenance be repeated at least yearly. This is to prevent water running down external walls which can saturate the masonry and cause internal dampness, particularly with stone walls as this property is constructed with. It is noted that due to overhanging trees, gutter clearing may be required more regularly than this recommendation.

Rainwater downpipes were seen to be in a reasonable condition throughout. The rainwater downpipe to the rear of the kitchen connects directly to the underground drain. Although no issues were evident with this, it should be noted that this can make clearing any blockages within the drain or the downpipe more difficult. It is for this reason that the recommendation to ensure gutters are kept clear is reinforced.

The rainwater downpipe to the front of the property discharges into the gully of the drain at ground level. However, the shoe of the downpipe finishes short of the gully resulting in water washing out the mortar of the paving and drainage around the gully (see Section F6 below).

Figure 17 - Rainwater downpipe to front of property

D

Outside the property

D4 Main walls

The external walls of the property were measured to be 600mm thick at ground floor level. The walls are formed externally with coursed sandstone with stone quoins used to construct each corner of the building and stone surrounds to window and door openings.

2

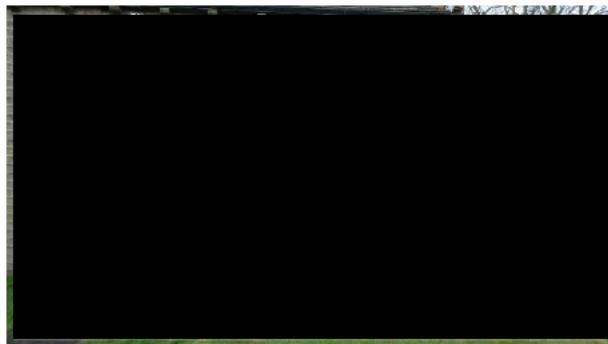


Figure 18 - Front elevation

The external sandstone is laid in a “water-shot” style, with each course laid at a slight tilt creating a “saw-tooth” appearance when viewed in section. This was common in the period of which the property was believed to have been built and helps to age the property. This style of construction was used to try and reduce internal dampness caused by the porous nature of the stone. The method was used to encourage any water absorbed into the stone to percolate down to the ledge at the bottom of the course and evaporate from there. The evaporation of moisture from the stone would also rely on the mortar encouraging a similar characteristic. For this reason, any repointing of the walls should only be done using traditional lime mortars.

Figure 19 - Water-shot stone finish

D

Outside the property

The internal face of the walls does not follow this same pattern and would instead have been constructed with stones laid plumb to create a more uniformed internal finish. It is common for stone walls of this age to be filled with random rubble, mud and mortar between the inner and outer skins of stone.

The external walls of the lower projection housing the kitchen and Bedroom 3 were of a similar construction, but with stone laid in a more vertical arrangement, and stone surrounds to openings less weathered suggesting that this has been constructed at a later date. The internal reveals of the door opening into the kitchen were noted to be dry-lined and so the condition of the walls around the inside of the opening could not be observed.

It was not possible to observe a damp proof course (DPC) to the external walls. It is noted that in the planning permission given to the renovation of the property, a strict condition was that no damp proofing work should be undertaken without express consent of the local authority. This was to preserve the historical asset of the property. The age of the property would precede the introduction of damp proof courses. The construction methods used at the time would instead facilitate any moisture within the wall to evaporate freely. This is again supportive of the need to ensure works to the walls are done with traditional materials. The cost of future repairs is therefore likely to be considerably more than a modern property and may wish to be considered.

Walls were seen to be in a reasonable condition with no evidence of ongoing movement. However, the rear external wall was seen to have a significant bow where it meets with the neighbouring barn conversion (Figure 20). No signs of cracking or movement as a result of this were identified and so this we believe this to be historical settlement of the building requiring no further action.

Figure 20 - Bowing of rear wall at abutment to neighbouring barn conversion

Pointing to all external walls was seen to be in a reasonable condition. We estimate that walls have been repointed within the last 25 years and with regular maintenance should continue to provide suitable weather resistance to the walls. Given the construction of the walls, any water ingress will readily result in internal dampness.

Outside the property

It appears that pointing has been completed using traditional lime mortars rather than cement based products. Again, this was a requirement of the planning consent for the renovation of the home. This is vital to prevent damage to the stone and allow evaporation of moisture absorbed by the stone.

An open joint in the stonework was seen to the side of the stone quoin to the corner of the rear elevation (Figure 21). This isolated opening should be repointed at the earliest opportunity to prevent water ingress into the wall. Again, this should be completed with lime mortar.

Figure 21 - Open joint in stonework to upper rear corner

Internally, the external walls are finished with plaster throughout. The type of plaster used on the walls could not be determined without further investigation but it was noted that the planning permission from the renovation of the property required traditional lime-sand-hair plaster to be used. The internal surfaces were tested with a Protimeter Surveymaster damp meter using a non-invasive scanning mode. This recorded elevated moisture levels consistently throughout the property at all levels. The consistent readings are indicative of a solid wall construction which lacks insulation. The poor thermal resistance of the walls results in condensation forming to the internal surfaces which can in turn result in mould forming. This was most evident to external window openings, where the exposed surfaces of the internal stone surrounds were black due to condensation / mould. These will always be the weakest points thermally as they are so close to the external environment and so will be coldest. The lack of insulation to the walls results in warmer, more humid air within the property condensing on external wall surfaces causing higher moisture readings.

Adding to this, water percolating through the porous masonry will be drawn towards the drier & warmer internal environment following periods of wet weather. The moisture then needs to evaporate from the internal environment. The use of modern cement based gypsum plaster to external walls will prevent this and so replastering to the inside of external walls must be undertaken using traditional lime mortar which will allow the moisture to evaporate internally.

To aid this “breathing” of the building envelope and to mitigate condensation/mould within the property, natural ventilation should be utilised as much as possible (by opening windows/doors regularly), even in colder months. Older properties tend to be draughty helping to maintain background ventilation, but this can create internal environments which some people find uncomfortable (e.g. due to the cold draughts). Trying to maintain heat within the property will also help, but poor insulation of historic external properties like this can make this costly. Regular use of log burning stoves and the central heating will help to mitigate this.

D

Outside the property

D5 Windows

Windows to the property are all double glazed units within a mixture of timber and uPVC frames.

The majority of windows are traditional timber framed windows, with side hung openings casements either side of a central fixed central window all set within the stone surrounds of the external walls. The central fixed windows are decorated with vertical and horizontal muntins (Figure 18).

The opening casements feature horizontal central muntins. Internally, the casement windows are fitted with brass ironmongery in the form of window peg stays and handle fasteners.

Figure 22 - Window opening internally

Four windows to the centre of the rear elevation provide light to the staircase internally. The lower two windows are fixed with horizontal muntins, while the upper two windows are opening casements matching others.

There are stone surrounds below these windows suggestive of previous window openings which have been blocked up in the past. Below this is a single, uPVC framed, double glazed window with a plastic ventilator set within the glass unit which served the cellar of the property.

Figure 23 - Windows to centre of rear elevation

1

Outside the property

The modern white finish to the window would not typically be considered in keeping for a listed building. It may be that this window has been replaced without listed building consent, or leniency may have been offered for the use of a cheaper modern window to this position given that it is partially below ground and the use of a timber window may have suffered with ongoing water damage due to this. We recommend that you ask your legal adviser to confirm that approval was obtained for the installation of this modern window.

Ventilation is provided to the window to provide continuous ventilation to the cellar. If the window were to be replaced, a form of background ventilation should be maintained, either through the replacement window or by way of a ventilated air brick similar to one seen at high level to the rear elevation.

The windows to the gable wall of the roof space were also found to be uPVC framed double glazed units. However, externally, these have been colour matched to the painted finish of the timber framed windows. They have also been designed with horizontal muntins, but the plastic profiles are larger than the timber windows. Again, it is possible that leniency was offered by the conservation officer during proposals to replace windows given the high level of these windows making them difficult to differentiate from afar. Again, we recommend your legal advisor confirm that consent was given for these windows during any previous planning applications and seek a copy of a FENSA certificate for the windows to confirm that they comply with the Building Regulations.

All windows were found to be in a reasonable condition. External decorative finishes to timber framed windows were beginning to flake and peel. Allowances should be made to redecorate the windows within the next 2-3 years and thereafter at regular intervals.

Figure 24 - Peeling painted finish to timber window frames

A small number of window handle fasteners were seen to be missing to some casements, but windows could still be secured by the peg stays. Consideration may wish to be given to replacing missing handle fasteners to maintain security of the windows.

Although windows have been replaced with more modern, double glazed units, due to their style the double glazing within the windows is more narrow than modern units. This will mean that the windows are not as thermally efficient as a modern double glazed unit would be. This is likely to result in high levels of condensation on the inside of the windows during winter months and will also contribute to condensation forming to internal reveals around window openings. Due to the listed status of the building, the installation of thicker glazing is likely to be considered a detraction from the original appearance of the building and so this limitation should be considered.

D

Outside the property

D6 Outside doors (including patio doors)

The property is accessed via two solid hardwood external doors to the front elevation. One opens into the central circulation area. The other opens directly into the kitchen.

2

Both doors feature small single glazed windows in the upper half of the door. The window to the main entrance is split into four small glazed units by timber muntins.

The main external door features traditional lever handles and a five lever lock. Draught seals have been adhered to the surrounding frame to reduce draughts through the door and improve the thermal efficiency of the opening.

The door was found to operate as expected, although the catch did not always engage in the keep without significant pressure being applied to the door. This is likely due to the addition of the draught seals to the frame. Adjustment of the keep in the frame could be made to ease closing of the door. Despite this, the door lock operated freely allowing the door to be secured.

The door to the kitchen is a stable door, allowing the top half of the door to be opened independently. The two halves of the door are retained together by a barrel bolt.

The door is operated using traditional lever handles with a five lever lock. There is a second five lever lock provided to the lower half of the door to allow this to be locked independently of the top half. The lower half of the door also features a barrel bolt allowing it to be locked to the frame.

The door was found to be in a reasonable condition, although the external decorative finish has been worn to the leading edge of the lower half of the door. This appears to be due to animals (dogs) scratching at the door. We would recommend that the door be redecorated to preserve the timber from weather as soon as possible.

Figure 25 - External door to kitchen

D

Outside the property

The door was found to operate freely although the barrel bolt to the lower half of the door did not align with the catch on the door frame. Adjustment of the ironmongery would be required to allow this to be used for increased security.

Figure 26 - Internal side of kitchen door

The five lever lock to the upper half of the frame allowed the door to be locked but then could not be retracted from inside. Using the key from the outside allowed the lock to be withdrawn. This could create a significant safety issue if the property were locked from inside and occupants tried to escape from this door in an emergency. It is therefore recommended that a joiner attend to the lock to repair it, or replace the lock as soon as possible.

When the door was closed, it was possible to see daylight between the door and the frame. It is therefore likely that this door will be draughty, particularly during periods of strong wind.

The frame has not been fitted with adhesive draught strips as the main external door has which could be added to reduce this, but this equally may make the door more difficult to close.

The doors of the property are specifically mentioned in the listing of the building on the Historic England website. Although they are not believed to be original they do form part of the historical interest of the property and so replacement with a more modern, insulated door is unlikely to be approved by the local planning department / conservation officer. Making minor improvements to the existing doors may therefore be the only compromise available if draughts and heat loss are considered to be excessive from the doors.

D7 Conservatory and porches

N/A	N/A
-----	-----

D

Outside the property

D8 Other joinery and finishes

The eaves of the lower pitched roof over the kitchen/Bedroom 3 projection are finished with timber fascia boards. Behind these, a continuous ventilation strip could be seen providing ventilation to the pitched roof above.

1

The timber fascia boards were noted to have faded decorative finishes. We would recommend that to preserve the timber from the weather and prevent rotting of the fascia boards, these should be redecorated as soon as possible and allowances be made to repeat this at regular intervals thereafter.

Figure 27 - Faded decoration to fascia board to front of kitchen

The ends of the fascia were also seen to be open. Although any water entering this opening would drain out of the ventilated soffit below, the opening would likely encourage insects / rodents / birds to enter the construction at this point. We would therefore recommend that the open ends of the fascia to both the front and rear verge of this roof be closed off with a steel or fibreglass insect mesh.

Figure 28 - Open end of fascia at eaves

D

Outside the property

The eaves of the garage is also fitted with timber fasica boards. These lack decoration but appear to be formed with treated timber. Despite this, to ensure the greatest longevity of the fascias, we would recommend a protective finish be applied to the fascia boards.

Figure 29 - Fascia to rear of garage

D9 Other

N/A

NI

E

Inside the property

Inside the property

Limitations on the inspection

All rooms

The property had floor coverings fitted throughout at the time of inspection which restricted our inspection of the floors. Attempts were made to lift carpet coverings in areas of concern but carpets were found to be tightly held in place.

Furniture and belongings were also present within all rooms which restricted our inspection to observable areas only.

E1 Roof structure

1 2 3 NI

The main roof is accessed via an insulated timber ceiling hatch with a folding timber loft ladder fitted to the ceiling of the first floor landing.

Figure 30 - Ceiling hatch at first floor level

3

The ceiling hatch opens up into the roof space towards the eastern end of the building (termed the Attic Room on the estate agent plans). The roof space has been separated into three areas. This initial Attic Room, a central Storage Room and the remaining roof void is then separated by a timber stud partition.

The Attic Room and Storage Room have adapted to form additional living space. However, due to the height of this room above ground level and without the use of a fixed, fire protected stairwell, the space could not be considered "habitable" under the Building Regulations. This means the room could not be considered safe for use as a bedroom, office, lounge etc. as in the event of a fire the occupants of the room may become trapped.

It was noted that planning permission was sought for the formation of a bedroom within the roof space, but for the above reasons, we suspect that Building Regulations approval has not been obtained for the conversion of the roof space, although we recommend you ask your legal adviser to check this.

Inside the property

When roof spaces are converted for use as additional space, they also typically require strengthening works to be undertaken to the roof structure, with larger capacity joists required to support the additional loads applied through occupation/storage. Again, details of any such work would have been included in a Building Regulations application. Strengthening work may be minimal in a historical building such as this as timber is likely to be a significantly higher grade and strength than modern softwoods, however, this would still need to be confirmed. Although it was unclear if any strengthening work had been undertaken as floor coverings could not be lifted, we did not identify any significant "bounce" to the floor when undertaking a heel-drop test.

If the desire were to convert the Attic Room and Storage room for 'habitable' use (e.g. a bedroom), the existing ceiling joist sizes would need to be confirmed and additional joists may be required to support the floor of the loft conversion. A fixed staircase would also be required with sufficient headroom above the stairwell. The staircase, corridor, and ground floor corridor would all need to be of fire resisting construction with fire doors provided to all openings onto the corridor. These adaptations would also result in significant alterations to the building which may be considered impactful on the historical asset and so permission for these alterations would initially need to be sought from the local planning department / conservation officer.

Considering the roof structure in its current configuration; the roof is formed from traditional timber purlins and a timber ridge beam which support timber rafters above. A modern Visqueen-type underlay was seen to be laid over these rafters, above which the stone slate roof covering is laid.

The timber purlins are exposed in the Attic Room and Storage area. The purlins above the Attic Room are supported on the gable wall and the internal stone wall between the Attic and Storage room. There are projecting larger stones below some of the purlin ends to help spread the load of the purlins (Figure 31).

Figure 31 - Purlin supported on larger stone to gable wall

Timber purlins above the Attic Room have been painted and so appeared to be in a reasonable condition. There was no evidence of infestation of the timber but the ends of the purlins where they are supported on the walls were tested with a Protimeter Surveymaster damp meter. This revealed elevated moisture content of up to 62% (to the central ridge beam). The purlins to the rear provided lower readings and the moisture content of all beams reduced significantly as the distance from the gable wall increased. Due to the porous nature of the stone, it is common for moisture to be absorbed into timber which is supported within the wall. Modern methods would recommend that timber ends be wrapped in Visqueen to prevent them being affected by moisture.

Inside the property

However, historical construction such as this typically used hardwood (e.g. Oak) in very large sections. This gives very good resistance to moisture absorption. This would have been combined with the natural ventilation of the roof space (from air flowing through the slates) which would dry the timber out if/when it became wet. However, with the conversion of the roof space, the ventilation has been reduced. Combining this with the likely moisture ingress through the wall from defects at roof level would cause the high moisture readings identified.

It is for this reason we have recommended the roofing works as per above (Section D1 & D2).

It was evident externally (Sections D1 & D2) that repairs have been made to the parapet and chimney above these purlins in the past. This may have helped to resolve issues of water ingress but the timber purlins require ventilation and warmth to aid in drying. The presence of a central heating radiator within the roof void will help this, but without adequate ventilation to lower humidity levels, the drying of the purlins may take significant time. In the current configuration, the only method to ventilate the room is to open the windows within the gable wall. We would therefore recommend this be undertaken as regularly as possible.

The purlin ends supported on the internal wall were found to be dry.

The purlins within the central Storage area were again exposed. These are supported on the internal wall and continue through the timber stud partition into the roof void beyond where they are supported on a timber king-post truss just beyond the stud partition (Figure 33 & Figure 32).

Figure 33 - Timber purlins to Storage area

Figure 32 - Purlins supported on timber truss in roof void

Timber purlins within the Storage area have not been painted. Although flight holes consistent with woodworm could be seen, there was no evidence (frass) seen which would be indicative of an ongoing infestation. We therefore believe that the timber is free from invasive insects.

Inside the property

It is noted that due to the time of year the survey was undertaken, the activity of some wood boring beetles (e.g. the Deathwatch beetle) is particularly low. We comment on this particularly to bring the potential of damage from such beetles to your awareness. We would recommend that you monitor the property during occupation and appoint a specialist surveyor to investigate any beetles you find within the property going forward.

The timber purlins within the central Storage area were seen to be damp where they were supported on the internal stone wall.

Figure 34 - Lower front purlin within Storage area

When tested with a damp meter, recordings of up to 27% were noted to purlins / ridge beams. Again, it is possible that repairs to the roof ridge above this area have reduced or resolved issues of water ingress and the timber is continuing to dry following this work.

Even if this is the case, we consider that there are other potential defects at the roof level (heavily weathered mortar to the central chimney stack) to be potential causes for water ingress at this point and again have recommended repairs above in relation to these.

The outer surface lower front purlin was seen to be loose and friable where it abutted the internal wall. This is indicative of previous dampness and/or infestation having weakened the timber. However, with older hardwood in large sections such as this, it is often the case that the centre of the wood remains solid as the wood appeared to be in this instance. Given this, we believe this timber to be sound but recommend ongoing monitoring for infestation and stress the importance of ensuring a watertight construction above.

The bearing end of the higher purlin below the rear roof slope was seen to be encased in steel. Looking through the gaps in the steel it could be seen that the end of the purlin has rotted and become very soft.

Inside the property

Figure 35 - Steel encasement to rear purlin

This type of strengthening work is typical where there is a requirement to preserve the historical timber of a building while continuing to provide strength to support the roof above. It is likely that during works to restore the property, a specialist survey was undertaken on the historical timber elements to assess their structural capacity and identify repairs which may be required to preserve them such as this. We would recommend that your legal adviser enquire with the vendor if any information is available regarding the historical timber within the property or if a previous report has been provided.

Staining of the timber purlins in this area was suggestive of previous or ongoing water leaking into the roof structure above. It is again noted that repairs have been undertaken to the ridge above, but without further investigation (from roof level or opening up of the ceilings in this area) it was not possible to determine if these issues have been resolved.

As ceilings have been lined in the Attic Room and Storage area, it was not possible to observe the condition of the timber rafters over the purlins.

It was not possible to access the remaining roof void beyond the timber stud partition. It was only possible to make visual observations of the roof void through a small hole in the plasterboard of the partition (Figure 36).



Figure 36 - Hole in stud partition allowing observation into roof void

Inside the property

Through this hole, it could be seen that the timber king-post truss supports additional purlins up to the western gable wall (party wall) (Figure 32).

The king post truss is supported on the front and rear external walls of the building and provides intermediate support to the roof structure. The truss is formed from timber of significant size and is expected to be an original, historical element of the roof construction. The truss was seen to be in a reasonable condition for its age. The underside of the truss is exposed within the master bedroom.

Again, timber purlins appeared to be of significant size, although the lower purlins below the front roof slope appeared to have some deflection along their length. This was not replicated in the roof line above and so in our opinion this is a natural irregularity in the line of the timber and not a result of excess weight applied from the roof coverings. We would nevertheless recommend that the condition of these purlins be inspected close up during any re-roofing works.

Figure 37 - Purlins below front roof slope

Purlins below the rear roof slope appeared to be in a reasonable condition.

It was not possible to access the timbers to check their moisture content. The staining to the western gable wall (Figure 2 & Figure 37) was suggestive of water ingress and dampness through the chimney, roof covering and parapet above. This is discussed earlier in this report. Dampness from any water ingress may have affected the ends of the purlins and so when accessible, they should be checked for signs of damage.

No evidence of infestation of the timber elements within this roof void could be seen from the limited observation.

However, mould was seen to the timber elements within this roof void as well as to the underside of the underlay.

Traditionally, air would have been able to flow through stone slate roof coverings providing ventilation to the roof space. The type of underlay applied over the rafters prevents this ventilation. When warmer, more humid air from inside the property rises into the roof void it will condensate when it reaches colder elements of the roof structure, particularly in winter months. Over time, this condensation results in mould growth forming and can lead to accelerated deterioration of timbers through fungal attack or by providing ideal conditions for insect infestation. It is for this reason that we have recommended the roof covering be renewed to allow a breathable (low-resistance) underlay to be laid over the rafters which will allow humidity to evaporate through the roof, while facilitating ventilation of the roof void yet also still providing a secondary defence against water ingress. This is covered in section D2 of this report.

Inside the property

The rafters over the purlins were all noted to be very uniform in shape and it is assumed that these have been replaced in the past.

Due to the presence of insulation laid over the ceiling joists, it was not possible to observe their condition during this inspection.

The roof structure of the low level roof over the kitchen/Bedroom 3 projection is of a similar traditional construction. The timber purlins are again exposed in this area and were seen to be in a reasonable condition. The timber used for this roof appeared to be more modern than to the main roof space again suggesting that this area of the building has been constructed at a later date. Flight holes were seen to the timber again, but no evidence of ongoing infestation was noted. The timber was found to be dry and we would recommend this be maintained in the usual way.

E2 Ceilings

The majority of ceilings within the property are formed from plasterboard with a painted modern gypsum plaster finish. Sections of plastered ceilings are separated exposed timber elements supporting the floors above.

Within the roof void, plastered ceiling finishes have been applied to the underside of the rafters between purlins within the Attic Room and Storage area. These were seen to be in a reasonable condition, although the lack of insulation and ventilation created by this construction is noted below (Sections J1 & J4). Peeling paint was seen to the ceiling of the Storage area near to the evidence of water ingress at the internal solid wall. This is due to dampness and humidity within the roof and once resolved, the painted finish should be redecorated.

Figure 38 - Peeling finish of ceiling in roof void Storage area

Similar plastered sloping ceilings have been formed between purlins in Bedroom 3.

Figure 39 - Bedroom 3 sloping ceilings

1

Inside the property

These ceilings were found to be in a reasonable condition.

Other rooms at first floor level are all finished with painted plaster ceilings except for the Master Bedroom en-suite . All were found to be in a reasonable condition except for crude cut outs for ceiling lights noted to the ceiling of the landing outside the bathroom. Consideration may wish to be given to replacing the light fittings and making good these areas of the ceiling.

The underside of the timber roof truss and intermediate timber girders could be seen within Bedroom 1 and Bedroom 2.

Figure 40 - Master bedroom ceiling with timber truss seen

At ground floor level, ceilings are again of painted plastered finish except for within the circulation area where ceilings are lined with a timber tongue and groove cladding.

Plastered ceilings were again found to be in a reasonable condition. Ceiling finishes are interspersed with timber elements of the first floor construction within the Kitchen, Dining Room, Lounge and Reception Room.

Where plastered ceilings abut timber elements, or at some ceiling perimeters, cracking was generally observed (Figure 41). This is due to the differential movement of the plastering compared with the timber or the walls. When each ceiling is next redecorated, a flexible sealant could be applied to the perimeter of each plastered section to help prevent this. However, given the movement allowed by some of the floors within the property, this may reoccur over time.

Figure 41 - Cracking between plaster and timber joists

Inside the property

Timber clad ceilings of the entrance hall were in a reasonable condition except for some dampness noted alongside the electrical cupboard at high level. This was tested with a damp meter and found to be dry suggesting historic damage from a previous leak. The area coincided with the master bedroom en-suite shower above and no defects with the shower cubicle could be observed. We would therefore recommend that this be redecorated and monitored for future recurrence.

Figure 42 - Damp staining to side of electrical cupboard in main entrance

The timber cladding within the circulation area is separated by timber beams at the base of the staircase. The beams were noted to be formed from older timber which could well be original. Speculating; the cladding could be covering an original ceiling construction above which was considered an important historical element of the building but which could not be economically repaired. The installation of the timber cladding may therefore have been a requirement of the conservation office/planning department when the building was renovated to provide a refreshed ceiling while preserving the historical construction above. This may need to be considered if any adaptations are to be considered to the entrance hall (e.g. wiring of lighting).

Figure 43 - T&G cladding to ceiling at base of stairs

The T&G cladding at the base of the stairs was noted to be uneven. This is likely to be due to the surface to which it covers and again indicates the likely covering of an original ceiling. The local conservation officer may have records of the ceiling construction.

Inside the property

E3 Walls and partitions

Walls within the property are generally constructed from traditional solid stone. This results in thick internal walls up to 660mm in thickness.

2

Many of these walls extend throughout the height of the building.

Modern timber stud partitions have been constructed to create additional rooms within the building. These have been constructed to subdivide the building to form the Utility Room/WC at ground floor level as well as to form the Bathroom, cupboards and en-suite shower rooms at first floor level. The stud partitions are generally lined with plasterboard, although modern tiled finishes and wall cladding panels line the walls within the en-suite shower rooms. There is also timber T&G wall cladding fitted to the lower half of the walls around the bath within the Bathroom. Tiling and wall cladding are all in a reasonable condition but prevent observation of the condition of the wall behind.

It was noted that the wall separating the Bathroom from the staircase is a solid wall, however, it was found to be hollow on the bathroom side suggesting that the stone wall has been dry lined within the bathroom. The condition of the stone wall behind this plasterboard could not be determined without opening up the wall. This may have been installed to create a more flush surface, or to protect a historical element behind.

As mentioned above, a timber stud partition has been constructed in the roof void to create a storage area. This is lined with plasterboard to one side only.

Shrinkage cracking was observed to plastered wall finishes within Bedroom 3, particularly below the window and below one of the purlins. This is likely due to minor shrinkage of the plaster to these larger areas and we would recommend filling the plaster when redecorating this room.

Figure 44 - Cracked and hollow plaster above door of Reception Room

Similarly, plaster over the internal door of the Reception Room was noted to be cracked. This was found to be hollow indicating the plaster is no longer bonded to the wall in this area.

Inside the property

Similar hollow plaster was identified to the solid wall of the utility room on the left side when entering the room. Again, allowances should be made to re-plaster the affected area when the room is next redecorated but this would be considered a typical repair for a property of this age and style.

The wall finish to the side of the electrical cupboard in the ground floor hallway showed evidence of damage from water damage. As with the damage to the ceiling in this location, this is believed to be due to a previous water leak from above which, due to the dry condition, is now expected to have been resolved (Figure 42).

There is a small window at low level to the stone partition between the ground floor WC and the staircase into the cellar.

Figure 45 - Low level window within WC

Due to the low level of this window, it is at risk of impact from accidental kicking or similar damage. The glazing of this window was noted to be Georgian Wired. Although this will help to give added strength to the glazing, the glazing may still shatter upon impact. Consideration should be given to replacing the glazing within this window with modern toughened glass which will break into smaller, safer pieces if impacted.

Low level walls within the eaves of the roof void were noted to be stud partitions. These reduce the overall area of the Attic Room and Storage area slightly and prevent the roof construction from being observed. However, the internal plastered finishes were found to be in a reasonable condition.

The internal surfaces of external walls are considered above (D4) and below (J1).

E4 Floors

The ground floor of the property is of a solid construction. The floor is covered with a tiled finish within the kitchen. Carpet floor finishes are fitted within the Lounge and Reception Rooms. Hardwood floor finishes are provided to the remaining ground floor area.

2

It was not possible to lift the carpet finishes within the Lounge/Reception rooms. These may be laid over a hardwood floor finish, or onto the floor slab below. The build-up of the floor construction could not be determined. Due to the age of the property, the floor may have originally been formed from stone slabs laid on the ground, but over time, improvements may have been made to this construction. It is not possible to confirm the exact floor construction without further investigation.

Inside the property

Floor finishes were seen to be in a reasonable condition throughout, although a bulge was noted to be present to the floor to the rear of the ground floor circulation area. This was most notable at the change in direction from the corridor towards the utility room and may present a trip hazard for some occupants.

Figure 46 - Bulge in floor of ground floor corridor observed in this area

The floor finish was intact, suggesting that it is not being affected by this bulge. This would indicate that the substrate of the floor was uneven at the time the finish was laid and that the bulge is not caused by a worsening issue such as heave. However, we would recommend that the floor finish in this area be monitored for further signs of movement.

The first floor of the property is formed from suspended timber double floors. These consist of timber joists which support floorboards. The joists are then supported off load bearing stone walls and intermediate timber girders.

It is believed that the underside of many of the joists and girders could be seen at the ceilings of ground floor rooms. There is a possibility that some of these exposed timber elements are decorative rather than providing structural function. However, given the age of the property, this is felt to be unlikely. As it is believed that the kitchen element of the building has been constructed at a later date, it is considered possible that the exposed girders within the kitchen may be decorative.

The exposed timber girders and joists at ground level were tested with a damp meter and were found to be dry.

The exposed timber was seen to be of a varying age/style, with darker timber seen to the perimeter of the staircase, and supporting the first floor landing area (Figure 47). These are considered likely to be original elements of the building with significant historical value.

Inside the property

These timber elements were seen to be uneven and the first floor finish above this area reflected this with an uneven finish particularly noted when entering the rear bedroom (Bedroom 4). Although it was not possible to lift the carpet finish of the landing to inspect the condition of the floorboards, we do not believe this to be a defect with the floor, simply the age related character of the construction. The limitations this historic construction offers are considered in Section I4.

Figure 47 - Historic timber girders to base of stairs

The floors at first floor level were finished with carpets to bedrooms and the landing area. Laminate floor finishes were provided to the Bathroom and en-suite shower rooms.

The carpet finish within Bedroom 3 was noted to be significantly soiled. It is assumed that this would be replaced as part of typical redecoration of the property.

It was not possible to lift floor coverings at the time of the survey.

Squeaking floorboards were noted to the landing of the staircase. This may be a simple repair needed with floorboards needing to be screwed in place if found to be nailed although carpets would need to be lifted to determine the required repair solution for this.

Heel-drop tests were undertaken in each room. Most areas provided a solid response to this test although some bounce was noted to the floor of the landing outside of Bedroom 4. Given the historical nature of the floor construction in this area, this is considered reasonable.

Bounce was also identified to the floor of Bedroom 4, most notably towards the front of the property.

Bounce was also identified to the floor within the Master Bedroom and Bedroom 2 which caused belongings on furniture to rattle when conducting the heel-drop test.

Checking the underside of each floor, no evidence of movement or defect with exposed timber elements could be seen.

The underside of the joists of the master bedroom could be seen within the Reception Room. These were measured to be 68mm wide and laid at roughly 450mm centres to a span of 1.42m. Although the depth of the joists could not be determined, the smallest modern softwood timber of this thickness would typically be suitable for this span. Given that the timber within this building is older hardwood, it is likely to have a greater load bearing capacity. Based on this, we would consider the timber more than adequate for the spans involved.

The timber joist sizes supporting the floor of Bedroom 3 could not be determined as they could not be observed from below.

Inside the property

To determine the cause of the bounce, further investigation would therefore be required during replacement of the floor coverings in these rooms. Older floors may lack suitable noggins between joists which could be introduced to help give additional strength to the floor. However, it may also be due to issues with the timber itself. Although the underside of the timber was seen to be in a reasonable condition where exposed, we would recommend that joist ends where built into walls be checked to ensure they are dry and free from rot.

The construction of the floor within the roof void is considered with Section E1 above.

E5 Fireplaces, chimney breasts and flues

There are three fireplaces remaining within the property. One to the Dining Room, one to the Lounge and the third to the Reception Room. As discussed in Section D1 above, it is likely that the property originally featured additional fireplaces at first floor level, most likely to the Master Bedroom and Bedroom 2.

Only the fireplace within the Reception Room remains in use, serving a log-burning stove.

Figure 48 - Log burning stove within Reception Room

The fireplace has been rebuilt using brickwork and the opening of the chimney supported by a concrete lintel.

The log burner appeared to be functional but was not in operation at the time of the inspection. We would recommend that a HETAS certificate be obtained confirming the installation of this appliance meets the requirements of the Building Regulations.

It was noted that the decorative timber mantelpiece above the opening of the fireplace showed signs of heat damage, with molten varnish to the underside of the mantel.

Figure 49 - Heat damage to varnish of mantle

2

Inside the property

The log-burning stove is likely to produce significant heat and the manufacturer of the stove will have specified minimum distances required to combustible materials. It is recommended that the details of the stove be confirmed to ensure that the timber mantle is the minimum distance required from the appliance.

The fireplace within the Dining Room is in a typical location for a property of this age, where a central fireplace would have been formed against the circulation space to provide heat to the centre of the property. This again helps to confirm the age of the property. This fireplace has a stone surround and stone hearth.

Figure 50 - Dining Room fireplace

The stone has been cleaned and the flue blanked off. It was therefore not possible to observe the condition of the flue above. The fireplace would likely be ideal for the installation of a log burning stove if desired as it does not feature any combustible materials, although the condition of the flue and chimney would need to be checked. This is considered in Section D1 of this report.

The fireplace within the Lounge has also been closed off, and an electric imitation stove has been fitted within the fireplace.

Figure 51 - Lounge

Again, this fireplace is formed from stone and is likely to be original, although the stone mantelpiece piece appears to be newer and may have been replaced in the past. Again, the flue of this fireplace has been blanked off internally but the fireplace should be suitable for the installation of a log burning stove if desired and depending upon the condition of the flue.

If log burning stoves are desired, we would recommend that a HETAS approved engineer be appointed to inspect the condition of the flues throughout their length and consider the potential for installing new flue liners into the flues to serve the desired stoves. It is noted that this would need to be undertaken in line with the works recommended to the chimney in Section D1 of this report.

E

Inside the property

The underside of a flue could be observed within the cellar of the property. Looking up through this flue from the underside, it could be seen to be capped with a stone flag at ground floor level. It was not possible to observe this stone at ground floor level.

Figure 52 - Flue within cellar capped with stone

It is assumed the property originally featured a fireplace within the cellar which has been removed a long time ago. It would be preferable for unused flues to be ventilated to try and reduce the risk of condensation forming within the flues. This is discussed in Section D1 of this report but it is appreciated that this may not be possible to achieve from within the cellar. Introducing ventilation to this flue at the chimney stack is recommended.

E6 Built-in fittings (built-in kitchen and other fittings, not including appliances)

The property features a solid timber kitchen with base units below a hardwood worksurface with matching wall units above. The kitchen features built in appliances and an inset ceramic sink.

1

Figure 53 - Kitchen units

The kitchen was found to be in a used but serviceable condition. The solid timber nature of the units fitted will make the kitchen very hard wearing, but marks to the inside of cupboards were noted. The kitchen features an electric oven with an LPG fire gas hob over. There is a stainless steel splashback behind the oven extending up to a stainless steel extractor fan. The appliances were not tested as part of this inspection. It is recommended that you satisfy yourself with the condition of appliances which are to be included as part of the sale, in particular you should appoint a Gas Safe Registered engineer to test the LPG appliances prior to use to ensure they are safe.

Inside the property

There are a single laminated base unit below a laminated worktop within the utility room. There is a stainless steel sink inset within the worktop of this. This was again found to be in a reasonable condition. The ground floor WC features built in cupboards around the boiler and above the staircase which leads down to the cellar. These were all found to be in a reasonable condition.

Figure 54 - Ground floor WC cloakroom suite

There is a timber cloakroom vanity suite providing a small cupboard below the wash hand basin and enclosing the cistern of the WC within this room. Again, these were found to be in a reasonable condition.

There are two timber, full height cupboards formed to the first floor landing area. One of these is used for storage only, while the other encloses the hot water cylinder. This second cupboard is provided with ventilation at high level and low level to reduce the risk of condensation forming within the warmer cupboard. Both cupboards were found to be in a reasonable condition but belongings within both cupboards significantly restricted inspection within the cupboards.

Figure 55 - Cupboards to first floor landing

Inside the property

A timber cupboard has been constructed at high level within the main entrance hall to enclose the electrical cupboard. This was found to be in a reasonable condition.

E7 Woodwork (for example staircase joinery)

The property is fitted with solid timber panel doors throughout. These are fitted with oval door knobs and surface mounted keeps. It was noted that the planning permission granted for the renovation of the property required internal doors to be restored and so these doors may be original.

2

Figure 56 - Panel doors with knobs and keeps

Doors were generally serviceable but due to the solid timber nature, they have experienced warping to a number of openings. Some doors have suffered from this worse than others. Solid timber doors are susceptible to this due to changes in humidity and temperature. For minor warping, as found to doors such as the Master Bedroom & Bathroom, adjustments can typically be made to the hinges and keeps to allow the door to be closed again easily.

More significant warping of doors, as seen between the Kitchen and Dining Room.

Figure 57 - Warped door to Dining Room

Due to this, it was not possible to close the door.

Inside the property

The same issue was found to the door into the Lounge. In such instances, it may require the door to be slowly flattened over time. It may be considered easier to replace the door, but due to the expected historical value of the doors, this is unlikely to be accepted by the local conservation officer. We would initially recommend you appoint a joiner to review what adjustments can be made to such doors.

Doors to bathrooms, en-suites and WCs are fitted with traditional rim-latch locks. Where these engaged with the keeps they were found to operate as expected.

Door openings through thicker solid walls are lined with matching timber panelling. Door openings are then finished with lambs tongue-style architraves, but these have also been fitted with an additional decorative bead to the outer edge to create a period style appearance. This should be noted as if replacement architraves are ever required, they will need to be re-formed using matching profiles.

Plinth blocks are fitted at the base of door openings where architraves meet skirting boards. Some of the plinth blocks were noted to be heavily worn due to damage from pets, particularly within the Dining Room & Kitchen.

Figure 58 - Worn plinth block to base of door opening

Skirtings are provided to the perimeter of each room in a Torus profile. These were found to be in a reasonable condition throughout.

The door opening of the Reception Room is supported by an exposed timber lintel. This was seen to be in a reasonable condition.

As mentioned above, there are exposed timber elements of floor and roof construction in various rooms around the property. These were seen to have historic flight holes present from previous woodworm, but no evidence of ongoing infestation was seen. It is recommended that you be aware of the risk of insect damage to exposed hardwood beams such as this and remain alert to the presence of any beetles within the property as these could be of a woodboring species which must be dealt with as quickly as possible if found to prevent damage to the timber.

E

Inside the property

Exposed timber was generally found to be dry throughout where tested, except where mentioned elsewhere within this report.

A small section of timber covers the joint between stone slabs over the staircase leading down into the cellar. These stone slabs form a shelf within the ground floor WC, but the timber covering the underside of these slabs was found to have rotted heavily. The timber was found to be damp, most likely due to the damp environment in which it is installed. The timber is not believed to be structural and so recommendations are to remove this to prevent it falling onto anyone entering the cellar which is possible given its friable condition.

Figure 59 - Rotten timber above stairs to cellar

The staircase and first floor landing are protected by a hardwood balustrade. The balustrade is anticipated to be original, or at the very least it is very old. Repairs have been made to the closed string at the side of the stairs and the handrails have been encased in newer material. This has a contrasting grain and finish to the spindles and strings of the staircase/balustrade.

Figure 60 - Historic balustrading to staircase

Inside the property

The lower section of the balustrade, leading up from the ground floor was noted to be loose. This could pose a significant safety risk should anyone fall on the stairs and rely on the handrail/balustrade for support as it may give way under significant load. It is therefore recommended that the balustrading be repaired at the earliest opportunity. Given the historical interest the balustrade holds, repairs should be made in traditional methods and will require the skills of a joiner experienced in heritage repairs. The cost for this could be significant and would be difficult to estimate. It is recommended you seek quotations from a specialist joinery firm for this work.

E8 Bathroom fittings

The property is provided with a main bathroom at first floor level which features a traditional bathroom suite featuring a close coupled WC, wash hand basin on a pedestal and a free standing bath. All were found to be functioning as expected. It was noted that the bath is provided with a traditional bath mixer tap with shower head. Due to the free-standing nature of the bath, any overspray from the shower head will cause puddling on the floor. The room is not of a water tight construction and so large quantities of water on the floor could drain through to cause damage to the ceilings below.

The Master Bedroom en-suite is provided with a modern close coupled WC with matching wash hand basin both set within a timber cloakroom suite. These again were found to function as expected. The en-suite features a large shower cubicle with a ceiling mounted rainfall shower unit connected to a shower mixer on the wall. The shower tray is lined with a wall cladding and tiles. The shower was turned on and found to operate and the shower cubicle closed as expected.

The clean nature of the silicone indicated the recent re-tiling or re-sealing of the shower in this room. As evidence of a leak had been identified to the main entrance hall below this area, it is assumed that works have been undertaken to resolve this. The ceiling and wall below were now found to be dry and so the leak is expected to have been resolved as no cause of a leak was evident. If the leak is found to continue in the future, we would recommend that the drainage from the shower tray be investigated, although this would require the shower cubicle to be dismantled.

Figure 61 - Master Bedroom en-suite

There is a second en-suite shower room serving the central rear bedroom (Bedroom 2). This is again provided with a modern matching bathroom suite, with a close coupled WC and wash hand basin on a pedestal. There is a quadrant shower cubicle with a thermostatic mixer shower fitted to the wall within the cubicle, with a shower head on a rail. The shower and wash hand basin were found to operate as expected.

Inside the property

The WC was found to have a broken flush mechanism. There was also evidence of the toilet becoming blocked. This may be due to the restricted flush as the push-button flush may only be operating with a more economical light flush. Once the flush mechanism is repaired, blockages to the toilet may reduce.

Figure 62 - Bedroom 2 en-suite WC

The seat of the toilet pan was also found to be loose.

We would recommend that a plumber be appointed to replace the internals of this cistern and fix the flushing mechanism. If blockages continue to occur, the drainage from the toilet may need to be investigated further.

While attending, the plumber should look to re-secure the seat to the pan or replace the seat if necessary.

E9 Other

The property features an original cellar. This is accessed via a stone staircase leading from the utility room into the cellar. The staircase is not provided with a handrail, and is considered narrow by modern standards. Care should be taken when accessing this cellar for this reason. Consideration may be given to installing a lock to the door at the head of the staircase to prevent unsupervised access to the cellar by young children.

2

Figure 63 - Staircase to cellar


Inside the property

The cellar is constructed in a similar manner to the rest of the property, with solid stone walls throughout. These are finished with a white painted finish which would be assumed to be limewash. The ceiling of the cellar is again of painted stone in an arched arrangement. This supports the solid ground floor above. Old metal fixings were observed to the ceiling but have corroded.

Figure 64 - Corroded fixings to ceiling of cellar

The floor of the cellar is formed from stone flags. At the base of the rearmost wall, a clay gully is set within the floor for drainage. The floor slabs were seen to be visibly saturated and it is assumed they are laid directly onto the soil below.

Figure 65 - Drainage gully to floor of cellar

Inside the property

The walls of the cellar were also evidently damp, with water damage particularly noted to the reveals of the window opening.

The cellar features three traditional working surfaces built from large stone slabs supported on stone walls.

The floor of the cellar is around 1.6 metres below the external ground level. There is therefore likely to be significant hydrostatic pressure from ground water on the outside of the walls which will force water through the porous stonework into the cellar. The same will apply vertically up through the floor. During periods of wet weather, the quantity of water in the ground will increase as water runs towards the property from surrounding higher fields. This will increase hydrostatic pressure and increase the quantities of water entering the cellar. For this reason, the cellar could not be considered a habitable space and careful consideration should be given for what is stored within this room.

Figure 66 - Window of cellar

The gully to the rear of the room should help to facilitate the drainage of the cellar should water levels begin to rise. To prevent significant flooding, it is recommended that the gully and connected drain be kept clear. A visual inspection of the gully suggested it may be partially blocked and so we would recommend that the gully and drain be checked and jetted clear where required.

Due to the constant moisture entering the cellar, walls and floors are likely to remain damp at all times. Combined with the lack of heating, this will cause condensation and mould to form. This could be seen at low levels and has resulted in some of the limewash finish flaking to walls, particularly around the window opening. The limewash could be re-applied throughout to provide a fresh finish to the cellar if desired. Modern paints should be avoided as they will not allow the moisture within the walls to evaporate through them freely.

To try and manage the dampness within the cellar, ventilation should be maintained at all times. The plastic ventilator fitted within the window will help towards this but may not be sufficient. Due to the position of the construction below ground, it is difficult to introduce additional ventilation other than through the window opening. The installation of an openable window may help to improve ventilation, but this would need to also be closed during periods of wet weather to prevent water ingress.

If the desire were to utilise the cellar to provide additional habitable space (e.g. for an office or similar), significant work would be required to manage the levels of moisture entering through the surrounding structure. The use of a drained cavity basement lining system would help to allow water to drain through the walls and floors to a channel drain connected to the existing drainage system. A pump may be required to help manage drainage during periods of wetter weather.

Inside the property

Modern finishes could then be formed inside of this tanking system. This would require original elements of the cellar (the floor and stone work surfaces) to be disturbed or removed and so consent for this work would first be required from the local planning department/conservation officer. The cost for this work is also likely to be significant, with a reduction in floor area also resulting. Due to the relatively small area of the cellar currently, this may restrict the potential final use for this space.

Based on the area of the cellar, we would estimate the cost for installing a drained cavity tanking system to be in the region of £4,200.00 (excl' VAT). To then form modern finishes within this would be in the region of an additional £6,660.00 (excl' VAT). This would be considered optional work and is therefore not included in the above table.

The main staircase of the property is constructed from stone with a carpet finish over.

Figure 67 - Stone staircase

There were no signs of movement or defects noted with the stone stair construction.

There is a small void below the staircase which has a significant stone surround to a small glazed window. Looking through the window, there is an arched void lined with brickwork. This is not a feature we have witnessed before. Following extensive research, we believe this to be an original bread oven. A small fire would be lit within this brick dome to heat up the brickwork. The debris of the fire would then be removed and bread put in to bake from the radiant heat retained by the bricks.

It is not recommended that this be reinstated for this purpose but the historic element has been retained in a sympathetic way.

Figure 68 - Historic brick void beneath stairs believed to be an old bread oven

F

Services

Services are generally hidden within the construction of the property. This means that we can only inspect the visible parts of the available services, and we do not carry out specialist tests. The visual inspection cannot assess the services to make sure they work efficiently and safely, and meet modern standards.

Limitations on the inspection

Appliances and services were not tested as part of the inspection unless otherwise stated.

F1 Electricity

1 2 3 NI

Safety warning: Electrical Safety First recommends that you should get a registered electrician to check the property and its electrical fittings at least every ten years, or on change of occupancy. All electrical installation work undertaken after 1 January 2005 should have appropriate certification. For more advice, contact Electrical Safety First.

Mains electricity is connected via an overhead supply feeding an older 100Amp mains fuse within the electrical cupboard at high level within the main entrance hall. The mains supply then feeds into a modern digital electric meter which in turn supplies a modern consumer unit. The consumer unit (CCU) features modern MCB and RCD protection to circuits. The CCU was marked as having been inspected last in October 2008. We estimate that this is the date at which the CCU was installed. It is recommended that your legal adviser obtain copies of any up to date electrical test certificates for the property.

3

Figure 69 - Consumer unit within main circulation space

Electrical switches, light fittings and sockets were relatively modern, with contrasting receptacles and switches noted within the kitchen indicating more recent upgrades to switches in this area. Other receptacles and switches within the property were generally white plastic units, with a combination of pendant light fittings and spotlights fitted to rooms. We would estimate that the switches and sockets are of a similar age to the CCU and therefore presume that the property was rewired when the electrical consumer unit was upgraded. This is likely to indicate the time when the property was renovated.

The use of energy saving lighting is considered in Section J3 below.

Spot lights to the first floor landing were seen to have been poorly cut into the ceiling leaving them loose and uneven. Consideration may wish to be given to having these rectified for an improved appearance.

Despite the relatively new nature of the installation, we would recommend that a full electrical test be undertaken by an NICEIC approved electrician to determine the suitability and safety of the electrical systems within the property unless a recent test certificate can be obtained by your legal adviser.

Services

Wiring from a junction box at low level within the hot water cylinder cupboard at first floor level was found to be exposed. It was not clear whether this wiring is live or not, but if it is, it would be considered hazardous. An approved electrician should be asked to test this wiring and isolate redundant cables, or enclose the wiring in a new junction box if still in use.

Figure 70 - Exposed wiring to junction box in cylinder cupboard

The mains fuse serving the property is likely to be sufficient for modern installations. However, if considering installing elements such as an electric car charger, the fuse may need to be replaced with a modern unit for safety. This would typically be arranged with the distribution network operator (Electricity North West).

There is no alarm system fitted to the property, but an alarm is fitted to the garage.

There are mains powered smoke detectors fitted to ceilings at ground floor and first floor level.

A supply from the mains CCU feeds a smaller consumer unit within the garage. The feed is supplied via an armoured cable running along the base of the front elevation, over the roof of Bedroom 3 to a junction box at the base of the rear elevation. This is then fed via an underground trunking to the garage. The smaller CCU provides separate modern protection to the lighting and electrical receptacles in the garage.

F

Services

F2 Gas/oil

Safety warning: All gas and oil appliances and equipment should be regularly inspected, tested, maintained and serviced by a registered 'competent person' in line with the manufacturer's instructions. This is important to make sure that the equipment is working correctly, to limit the risk of fire and carbon monoxide poisoning, and to prevent carbon dioxide and other greenhouse gases from leaking into the air. For more advice, contact the Gas Safe Register for gas installations, and OFTEC for oil installations.

Mains gas is not available in the area. Instead, the property is provided with LPG gas via two 2,200 litre (water capacity) tanks to the front corner of the plot.

2

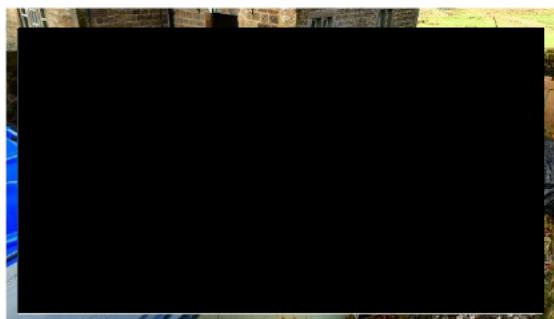


Figure 71 - LPG gas tanks to front of property

One gas tank provides gas for the boiler within the ground floor WC. The second tank provides gas for the gas hob within the kitchen.

One of the tanks was noted to have been manufactured in 1998. Due to algae growth on the tank, it was not possible to date the other. Tanks were seen to show minor signs of corrosion externally. The FloGas website suggests that tanks typically have a lifespan of 10-15 years and so the tanks may have exceeded their life expectancy depending upon the date they were actually installed. In some situations, tanks can be installed on a long term contract to spread the cost of installation.

The tanks were measured and found to meet the minimum required distances from the property for tanks of this size without a firewall surrounding them. They were also seen to be supported by a concrete slab. However, walls around the tank enclosure were fitted with timber fences to two sides. These are considered a combustible material which is typically not accepted so close to where LPG is stored. We would therefore recommend that the fences be removed from the walls. We recommend that the cylinders, connections, pipework and isolators should all be checked by a Gas Safe Registered engineer prior to use to ensure they are safe and compliant (Condition Rating 3). Allowances may need to be made for the replacement of the tanks if they are found to be life expired.

Gas supplies from the tanks are fed underground and rise up to the outside of the external walls close to the corresponding appliances. The pipes enter the property in copper but are fed from below ground in plastic. The supply to the boiler has an isolation valve visible to the rear. The supply to the hob was encased in a locked cover. It is likely that an isolation valve is provided behind this cover. Although the boiler was found to be working during the inspection, we would recommend that the safety of the boiler and gas hob be checked by a Gas Safe engineer prior to use.

F3 Water

The property is connected to the public mains water supply. This enters the property below the kitchen sink where the mains water stop tap is positioned.

1

You should familiarise yourself with the position of this tap should the water supply need to be isolated in case of a leak.

Owner's belongings prevented observation of the mains water stop tap and so the material from which the incoming mains pipe is made could not be confirmed. Older lead pipes can be considered to pose health risks over long term use and so if the mains supply is fed by a lead pipe, consideration may wish to be given to applying for this to be replaced with a modern plastic pipe.

Where visible, pipework within the property was seen to be plumbed in copper. To prevent possible freezing and leaks, it is essential to maintain good insulation to all vulnerable areas of plumbing, although no plumbing was seen to be present in unheated spaces of the building.

F4 Heating

3

The property is heated by a Viessmann Vitodens 100 condensing combination boiler located within the ground floor WC. The boiler is positioned within a cupboard which may restrict access to the boiler for servicing or repairs. It is assumed that the space around the boiler was considered during its installation and is therefore compliant. The flue of the boiler vents out through the rear external wall.

Your legal adviser should be asked to obtain any service records or warranties relating to the boiler. Similarly, if available, records of Building Regulations approval for the installation of the boiler should also be obtained.

The boiler is A-rated for energy efficiency and would still be considered efficient by current standards.

You should arrange for a Gas Safe Registered engineer to inspect and service the boiler prior to use.

Pipework from the boiler was seen to be copper but lacked insulation. Insulating circulation pipework will help to improve the efficiency of a heating system but is disruptive to do retrospectively. If pipework is exposed through other works, it is recommended that heating pipework be lined with insulation when possible.

The boiler provides heating to a modern central heating system controlled by a wall mounted thermostat in the ground floor hallway. The system is controlled via a digital programmer within the hot water cylinder cupboard at first floor level. Modern steel panel radiators provide heat to rooms. There is a combination of single and double panel convection radiators to rooms, with stainless steel towel radiators fitted within bathrooms / en-suites. Radiators are fitted with thermostatic radiator valves (TRVs) to give added control to the central heating system.

The TRV to the radiator on the first floor landing was seen to be broken and required replacement.

F5 Water heating

Hot water is provided via a 210 litre capacity, unvented, indirect hot water cylinder positioned within the cupboard on the first floor landing outside the kitchen.

The boiler will heat up the water within the cylinder indirectly by supplying hot water into a heating coil within the cylinder. The heating coil will then heat the water in the cylinder which is supplied to hot taps and outlets. The unvented nature of the cylinder will allow hot water to be provided to outlets at mains pressure. It is noted that outlets/taps which are located further from the cylinder may initially experience cold water when opened until hot water is drawn through from the cylinder.

Insulating hot water pipework from the cylinder can help maintain the temperature of the water within the pipes but over time, when not in use, water within the pipes will cool. This can result in excess water being used while drawing through hot water from the cylinder.

Pipes were not seen to be insulated and insulating pipework retrospectively is intrusive and so it would be recommended that this be undertaken when sections of supply pipework can be accessed.

Due to the presence of belongings within the cupboard obscuring the view of the cylinder, it could not be determined if the cylinder is provided with an electric immersion heater. Most modern cylinders are fitted with an electric immersion heater to allow hot water to be provided in the event of a failure or problem with the gas boiler (e.g. the LPG gas runs out prior to being refilled). We recommend that you ask the vendor to confirm if an immersion heater is provided, or ask if a Gas Safe Engineer can confirm this when testing LPG installations and the boiler.

1

F6 Drainage

Surface water drainage is provided via modern plastic gullies to the base of the external walls.

2

Figure 72 - Raised gullies to rear

Gullies to the rear elevation were seen to be positioned higher than the surrounding ground.

F

Services

This is not considered detrimental, but the gully tops could be at risk of being loosened from the connections to the drains if accidentally kicked when walking around the rear of the property.

The rainwater downpipe to the rear of the kitchen connects directly to the drain below ground.

The surface water drainage to the front of the property is made from downpipes discharging into circular plastic gullies. As mentioned in Section D3, one of the rainwater pipes fails to discharge correctly into the gully, causing water to wash out the surrounding mortar (Figure 17). Following recommended adjustment of the downpipe, the gully should be adjusted and set into a new mortar surround.

There is a clay gully in the floor of the cellar (Figure 65) which was seen to be partially blocked. This should be cleared of debris to facilitate water drainage from the cellar.

The waste pipe from the kitchen sink discharges into a surface water gully at the base of the rear elevation. The staining seen to the wall behind the pipe indicated that the pipe is leaking and so a plumber should be appointed to repair/replace this pipe.

Vertical soil stacks to the rear of the property are connected directly to drains below ground level. One of these is a taller, ventilated stack to the centre of the rear elevation, while the other is a smaller stub-stack outside the ground floor WC. This serves the ground floor WC and utility room. The taller soil and vent stack serves the first floor bathrooms. Both soil stacks were seen to be in a reasonable condition, with no evidence of leaks seen.

Drains appeared to extend out towards the rear boundary. It could not be determined if drainage is combined or separate. The route of drainage from the property be also not be confirmed as no further access points or inspection chambers are provided to the drains. The estate agent believed the drains to connect with the neighbouring property and extend out to a soakaway within the field behind. No evidence of a soakaway or septic tank could be seen from the grounds of this property and so this could not be confirmed.

We would recommend that you seek confirmation of the drainage arrangements from the vendor via your legal adviser. If drains do indeed extend out to a soakaway within the neighbouring field, access rights may be required to service the drainage system and so your legal adviser should confirm if such rights of access are granted as part of the title of the property.

F7 Common services

N/A	
-----	--

G

**Grounds
(including shared areas for flats)**

Grounds (including shared areas for flats)

Limitations on the inspection

G1 Garage

1 2 3 NI

3

The property is provided with a detached triple garage towards the eastern end of the site. A search of the local authority website confirms that planning permission was granted for the construction of this garage in 2013 (Ref; [REDACTED]).

The garage is formed with cavity walls made up of a concrete blockwork inner leaf faced with stone externally. The stone features stone quoins to the corners of the building. It was noted that the rear elevation of the garage has not been faced with stone and is only finished with exposed concrete blockwork.

Figure 73 - Exposed blockwork to rear of garage

This reduction in the finish is not confirmed on the planning application. It should be confirmed that this reduction in the scope of work was agreed with the planning department. If no such consent was granted for this reduction in the finish, the garage may be considered to have been constructed contrary to the planning permission granted. It is noted that the garage design overall is smaller than the proposals approved as part of the planning application. The slight reduction in the external appearance may therefore have been approved as part of this.

The exposed blockwork is likely to be very porous and at risk of damage from freeze/thaw action. It is recommended that a rendered finish be considered to protect this blockwork. Again, approval for the type and colour of finish to be applied would have to be sought from the local planning department.

Grounds (including shared areas for flats)

The external walls of the garage are built off a modern Visqueen DPC. This could be seen to extend over the opening of the personnel door where the door has not been fitted with an external threshold. It is recommended that the cavity be closed at this point with a new threshold.

Figure 74 - Personnel door to garage

The external walls of the garage were otherwise seen to be in a reasonable condition. The garage door opening is supported by a steel lintel. The personnel door is supported by a stone lintel to the outer leaf and a timber lintel internally. The external doors have been approved in style and colour as part of a discharge of planning conditions in [REDACTED]. The garage doors could not be opened as part of the inspection as they were locked. The personnel door was found to operate and lock as expected.

The garage is covered with a pitched roof covered in slates below clay ridge tiles. The ridge tiles are mechanically fixed using a modern ridge fixing system. A number of slates have been broken to both the front (3No.) and rear (2No.) roof slopes. It is recommended that broken slates be repaired as soon as possible. The roof is formed from pre-fabricated timber trusses which have been covered with a modern underlay. Trusses were seen to be tied to the walls at regular intervals and in a reasonable condition.

The eaves of the roof are fitted with uPVC rainwater goods as mentioned in Section D3. The gutters were seen to be blocked with leaves and other debris and should be cleared as soon as possible.

Gutters are fixed to timber fascias which lack decorative finishes. It is recommended that the fascias be decorated at the earliest opportunity to extend their lifespan.

Internally, the garage is constructed with a solid concrete floor. This was seen to be in a reasonable condition. Two metal motorbike locking points have been set into the floor. These create a potential trip hazard when not in use.

The garage is supplied via an armoured electrical supply from the main property which feeds a modern consumer unit with RCCB and MCB protection to the receptacles, alarm and light fittings within the garage.

Electrical sockets are fitted to walls and fed via metal conduit from the roof level. LED strip lights are fitted to the bottom chord of the trusses and provide generous lighting to the garage.

An electrical test certificate should be provided by the vendor or the electrical installations should be tested within the garage by an NICEIC approved electrician to confirm they are safe.

Grounds (including shared areas for flats)

G2 Permanent outbuildings and other structures

To the left side of the garage is a log cabin / BBQ hut. The condition of this was not inspected as part of the survey.

Around the hut, pipework was seen to protrude from the ground.

Figure 75 - Pipework to ground behind BBQ hut

2

It was not clear what these pipes served. We assumed they provide ventilation to a feature below the BBQ hut. Further investigation would be required to determine the purpose of these pipes. It is recommended you seek further information from the vendor about this via your legal adviser.

G3 Other

The property is accessed via a shared access road leading to the main road. The condition of this road was noted to be poor. The ownership and repair responsibility for this road should be confirmed with your legal advisor as consideration may need to be given to the significant repairs needed to this road which may be costly.

3

There is a timber gate to the opening of the driveway from this shared road. The gate could not be operated at the time of the inspection, but the timber post to which the gate would close against was seen to have rotted away and broken off at ground level. If there is a desire to close the gate, a new post at least would be required. The gate opens onto the driveway which is a combination of gravel and tarmacadam. The sloping nature of the driveway below a sloping field to the south may result in significant water running over the driveway during periods of wet weather. Water is then likely to accumulate behind the walls at the lower end of the driveway. Staining to the low level of the stone walls around the driveway appeared to suggest this is the case.

Consideration may wish to be given to installing drainage to the lower end of the driveway to help manage this, but the water should drain onto the garden at the base of the driveway eventually where it will natural absorb into the soil (Figure 76).

Grounds (including shared areas for flats)

Figure 76 - Lower end of the driveway

The front boundary of the property is formed from a dry stone wall.

The wall is in a reasonable condition. It is noted that the wall has been built to a reduced height to allow it to be constructed around one of the trees to the front of the property which leans heavily over the road to the front of the property. This is considered below, but the wall was seen to be in a good condition here.

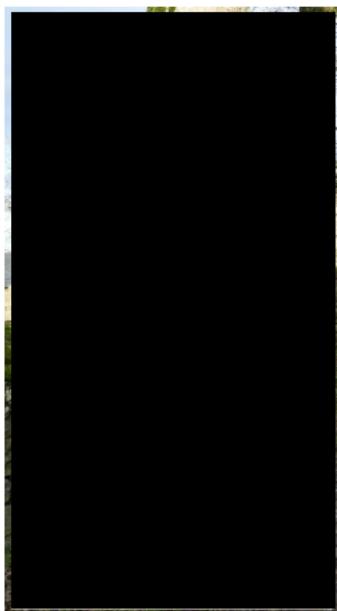


Figure 77 - Front boundary wall built around tree

This reduces in height to the front garden where it is finished with large coping stones. Gated openings are provided in the wall supported by stone gate posts. The walls are in a serviceable condition. The gated opening to the front garden is fitted with an old wrought iron gate. This is in a state of disrepair but may be considered to add character to the front elevation of the property. It is likely that the majority of access will be made via the driveway.

Gates are not provided to the other opening which opens into the bin store area / LPG tank area.

Grounds (including shared areas for flats)

The stone walls continue to enclose and shelter the areas where the LPG tanks are located to the front right corner of the property. The stone of these walls are instead joined with mortar.

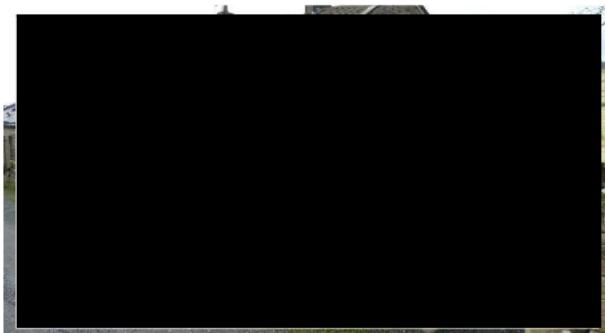


Figure 78 - Front boundary

Small timber fences have been fitted to the top of the walls around the LPG storage area. These may increase the loading on the walls when forces from strong wind are applied to the fences. This can accelerate the failure of the walls below.

The front garden is generally laid to lawn with a stone path leading from the front gate to the property. The lawn and path are considered serviceable. The path leads to stone steps down towards the main front entrance of the property as the front garden is raised above the path at the base of the front elevation. The garden is retained by stone walls. These retaining walls create a drop of 700-800mm which lacks any form of handrail to prevent people falling from the front garden down to the stone path. This safety factor may be considered unsafe, particularly if young children were to play on the front garden. A low level fence could be added around this garden to reduce the risk of falls.

Figure 79 - Front path

The stone path at the base of the front elevation extends from the driveway of this property, across the front elevation, wrapping around the front garden towards the neighbouring property.

The path was found to be in a reasonable condition but mortar between the joints of the paving slabs has weathered away. Open joints between the stone flats puts the surfaces at risk of becoming loose and uneven due to affects of freeze/thaw action if water gets under the paving slabs then freezes. We would recommend that allowances be made to repoint the path with new mortar to prevent this.

Grounds (including shared areas for flats)

The front path is separated from the driveway by another wrought iron gate. This gate is in a better condition but is of a similar age to the gate at the front of the property. The gate could not be closed due to the position of the keep fitted to the external wall of the kitchen. Adjustment of the keep is required if there is a desire to close this gate.

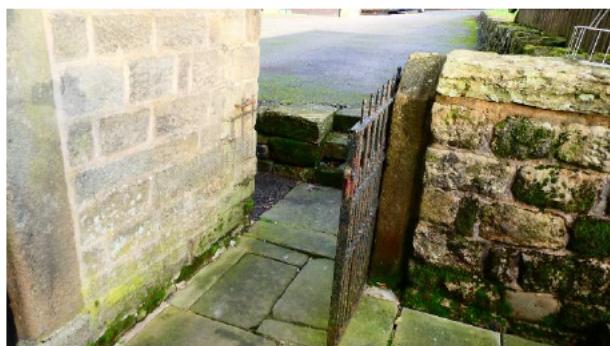


Figure 80 - Gate from driveway to front of property

Changes in level around the property are provided with stone steps for access. No handrails are provided to any of the steps and so there are potential risks for people to fall when navigating around the property, particularly at night. Handrails or guardrails should be considered for added safety.

To the base of the external walls to the side and rear of the property, there is a gravel path. This provides a hard standing route to the rear garden while also facilitating the drainage of water away from the base of the external walls to the side and rear elevation. With the lack of a modern DPC to the external walls, this permeable surface is ideal for helping to prevent external walls becoming saturated during periods of wet weather.

The rear garden is generally laid to lawn, with a considerable slope to the rear garden.

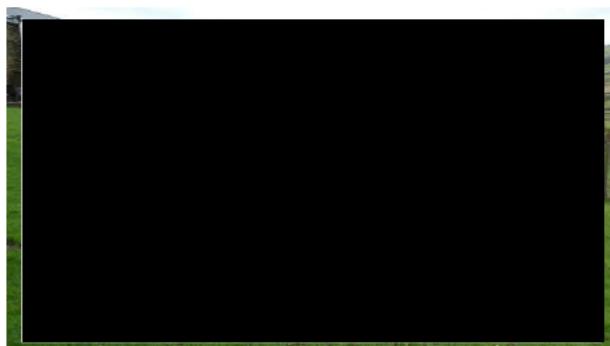


Figure 81 - Sloping rear garden

This may present as a fall risk to some users. The rear garden generally slopes towards the field beyond the rear most (northern) boundary. This will help to aid drainage from the plot into the land beyond. However, when walking around the garden, an area of soft, saturated ground was noted to the rear of the group of trees. It is possible that water does not drain as freely from this position. You may find that ponding occurs in this area during periods of heavy rainfall. This may be alleviated with the installation of land drains but installing these would cause considerable damage to the garden finish.

Grounds (including shared areas for flats)

There is a patio area formed to the south west corner of the rear garden. The patio area is formed from timber decking which was seen to be in a reasonable condition and appeared to have been recently decorated. Regular decoration will help to preserve the decking, but it was also noted that the decking was very slippery. This makes it very easy to slip and fall on the decking when it is wet. Care should be taken for anyone walking on the decking when wet, or consideration may wish to be given to installing gritted strips to the surface of the decking to increase traction.

There are a number of well established trees within the cartilage of the property. None are listed as being protected by Tree Preservation Orders (TPO's) on the local authority website.

There are four trees close to the front boundary. One of these leans heavily towards the boundary so much that the boundary has been rebuilt around the tree (Figure 77). As there is no sign of damage or movement of the wall around this tree, it indicates that the tree has not moved since the wall was built. However, the lean of the tree is considerable and may indicate issues with the root structure. We would therefore recommend you appoint an arboriculturist to assess the trees to the front of the property as soon as possible to confirm that they are healthy and safe.

The two trees to the eastern end of the front boundary do not lean as heavily and would be considered safer. However, the canopy of one of these trees has grown very close to the neighbouring property. As the tree is within the grounds of [REDACTED], the owner of the farmhouse would be considered responsible for reducing the canopy of this tree should it affect the neighbouring property. This work is likely to be required within the next 5 years and so should be considered.

There are a further eight trees clustered together within the rear garden.

Figure 82 - Cluster of trees within rear garden

Again, we would recommend that the trees be assessed for their condition and safety by an arboriculturist.

Grounds (including shared areas for flats)

The closest of these trees to the property was measured to be 7.5m away from the house. The canopy of the tree overhangs the low level roof over Bedroom 3 resulting in moss growth on the rear roof slope of the low level roof. The tree crown could be reduced to minimise future maintenance to the roof of the property. The work should be undertaken by a specialist tree surgeon.

The right (eastern) and rear boundaries of the property are formed from timber post and metal wire fences.

The left (western) boundary separating the rear garden of this property from the neighbouring property is formed from a timber picket fence. A small, matching timber gate is formed within this fence allowing access between the two gardens. The gate may indicate a right of way from one property to the other. You should ask your legal adviser if either owner has a right of way through this gate. If no right of way existing, we assume the gate has been added as a mutual agreement between owners.

The boundary fences were all found to be in a reasonable condition. The ownership and therefore maintenance responsibility of the boundaries should be confirmed with your legal adviser, particularly as any defects with the fences to the right and rear of the plot could allow livestock to escape from neighbouring fields into the land around the property.

H

Issues for your legal advisers

We do not act as a legal adviser and will not comment on any legal documents. However, if, during the inspection, we identify issues that your legal advisers may need to investigate further, we may refer to these in the report (for example, to state you should check whether there is a warranty covering replacement windows). You should show your legal advisers this section of the report.

Issues for your legal advisers

H1 Regulation

The property is understood to have been renovated from a derelict condition within the last 25-30 years. A search of the local authority website revealed that planning permission was obtained for the renovation of the property in [REDACTED] although the application was submitted using the former spelling of the property name, [REDACTED] [REDACTED], making the consent slightly more difficult to find (Application No. [REDACTED]).

The planning permission was granted for the relocation of the kitchen and bathroom, formation of a bedroom in the roofspace and formation of a ground floor WC. The consent was granted with a number of conditions which have been considered above. A copy of the consent is included as an appendix to this report. It is noted that the planning permission does not refer to replacement windows. It should be confirmed that approval was obtained for the installation of modern uPVC windows to some openings as these are in contrast with the traditional timber framed units.

Although planning permission can be found for the renovation of the property, your legal adviser should be asked to obtain confirmation that Building Regulations approval was obtained for these works. Due to the listed status of the building, Building Regulations compliance is likely to be granted with dispensation in regards to some elements (e.g. windows, doors, insulation levels). There are elements of the completed works, such as the roofspace conversion to a bedroom, that we consider are not in compliance with the Building Regulations and specific dispensation for these works would need to be confirmed with your legal adviser. Without this, we consider the areas within the roofspace cannot be considered habitable.

Due to the lack of ventilation noted within the unused roofspace, we would recommend that your legal adviser attempt to obtain confirmation that Building Regulations approval was also obtained for the renewal of the roof covering.

Other elements of work would also require Building Regulations approval and compliance for these works should be confirmed by your legal adviser:

- Log-burning stove installation (HETAS certificate)
- Gas/LPG installations
- Replacement of roof covering over the low-level pitched roof over Bedroom 3
- Compliance for electrical works in accordance with Part P of the Building Regulations

As mentioned in Section G1 of this report, the detached garage has been constructed but has not been finished with the stone facing to all elevations. Confirmation of this reduction in the scope of the finish could not be found on the local authority planning website, and so it should be confirmed by your legal adviser that this reduced finish has been agreed with the planning department. If consent has not been obtained, an application for a non-material amendment to the original approval will be required so that a rendered finish can be applied to the exposed concrete blockwork. Alternatively, works may need to be completed in accordance with the planning approval granted to date which would be significantly more costly. Again, Building Regulations approval should be obtained for the garage construction via your legal adviser.

The property features very old elements of timber which may be original. We would recommend your legal adviser seek to obtain any copies of historical timber reports which may have been prepared during the renovation of the property to assess the condition and historical nature of existing structural timber elements to ensure they were safe for re-use.

The routes of public footpaths should be confirmed by your legal adviser for your own knowledge and consideration.

Issues for your legal advisers

Your legal adviser should be asked to confirm if there are any easements or rights of way over the land of this property. It was noted that gated access is provided between the rear garden of this property and the neighbouring property. There may be a right of way for the neighbour to access their rear garden from this property and so this should be confirmed.

The route of drains from this property could not be determined on site. The estate agent suggested that drainage runs into the field at the rear of the property.

Foul drainage should not simply drain to the ground without treatment as it creates a pollution risk. We would anticipate there to be a septic tank (which would require emptying periodically), or a modern underground treatment plant allowing foul water to be treated and then discharged to a soakaway allowing the water to disperse into the ground.

Your legal adviser should be asked to confirm the route of drainage from the property.

If drains run to a septic tank or soakaway within the field to the rear, the easement rights for this should be confirmed by your legal adviser. Similarly, your legal adviser should confirm if you have any rights of access onto the neighbouring field to service drainage.

It is recommended that your legal adviser enquire as to whether there have been or if there are any ongoing disputes with neighbouring property owners or land owners.

H2 Guarantees

Your legal adviser should seek to obtain guarantees where available for the following elements:

- Gas boiler
- Timber windows
- uPVC windows

As the property has undergone significant renovation work, it is recommended that your legal adviser seek to obtain a Professional Consultancy Certificate (PCC) for the works undertaken to ensure they were completed in compliance with architects design where an architect was appointed. Without a PCC there is no assurance that works were checked for compliance while ongoing. This can mean that defects or non-compliant work may be present behind the visible construction.

H3 Other matters

Your legal adviser should also be asked to consider the potential presence of drainage or plant below the BBQ hut within the rear garden as identified by the pipework protruding from the ground around this hut. If there is an element of drainage, or other mechanical component under here, the presence of the BBQ hut makes this inaccessible and should be considered for future maintenance.

Works recommended to the left (western) chimney stack and copings at roof level would require access on to the neighbouring roof. As this wall encloses the neighbouring property also, it would be considered a Party Wall under the Party Wall etc. Act 1996. Works to repair this chimney and the copings to the top of the wall should therefore be discussed with a Party Wall Surveyor. Service of a notice under this Act may be required which would also facilitate the rights of access under this Act for these works.

H

Issues for your legal advisers

Due to the rural locality, bats are likely to be present and often roost in old roof spaces. Prior to undertaking any works to roof coverings, an initial preliminary bat survey should be undertaken to confirm if there is evidence of bat roosts within the roof space. If evidence of bats are present, further assessment would be required and consideration of the bats given when undertaking roof works.

Electrical installations were found to be over due an electrical test. Your legal adviser should seek to obtain an up-to-date NICEIC electrical test certificate for the property if available. Otherwise, we recommend an NICEIC approved electrician be appointed to confirm the suitability and safety of the electrical installations within the property.

Your legal adviser should confirm whether the LPG tanks are provided with a long-term contract to help spread the cost of their initial installation. If so, they may be covered for replacement as part of this ongoing contract if they are found to be life expired.

Risks

This section summarises defects and issues that present a risk to the building or grounds, or a safety risk to people. These may have been reported and condition rated against more than one part of the property, or may be of a more general nature. They may have existed for some time and cannot be reasonably changed.

Risks

I1 Risks to the building

Older properties such as this rely on traditional construction methods to preserve their condition. Modern methods of construction can be detrimental to the structure. The use of modern, cement based, products in particular can have a negative impact on the building and should be avoided. Some of these materials were seen at roof level, and recommendations have therefore been made to make sympathetic repairs to these areas.

Timber structural elements within the building are at risk of attack from wood boring insects, with damp timber often more desirable to such insects. It is therefore vital to ensure timber is kept as dry as possible. This should be through a combination of ensuring the envelope of the building is kept watertight, but also ensuring exposed timber elements are well ventilated.

A continued awareness for the presence of beetles should be maintained as it is important to identify any wood boring insects as soon as possible and treat timber to eradicate the infestation before timber becomes damaged to the point that it becomes structurally weakened.

A lack of ventilation was noted to the roof space of the property, partly caused by non-traditional underlay being used which lacks the ability to allow for humid air to ventilate through the roof covering. The presence of condensation due to this puts timber work at risk from rot, infestation and fungal attack.

Defects or hidden issues may be covered up by the relatively recent construction works undertaken to renovate the property. This potential risk for uncovering unseen issues is high with an older property and should be considered when undertaking any significant work in the future. We would recommend a healthy contingency be applied to the costs of any future repair works proposed to the building for this reason.

I2 Risks to the grounds

Well established trees within the grounds of the property overhang lower roofs and come close to neighbouring properties. Trees should be periodically managed, with crowns reduced by a specialist tree surgeon.

Trees towards the front boundary were seen to be leaning significantly. Although evidence would suggest they have been in this state for some time, the risk of them falling would be significant. We therefore recommend that a report on the trees by an arboriculturist be commissioned to confirm they are safe or to address any works required to make them safe.

Area of the rear lawn were found to be saturated and may experience standing water during periods of heavy rainfall. Improved land drains may be introduced to help manage surface water from the lawn if desired.

The property resides on sloping ground. Surface water is likely to run off the higher field in front of the property and across the plot. The hard standing driveway is likely to experience the most surface water run off and this may wash away gravel surfaces or cause ponding/flooding where walls around the driveway restrict the flow of water to the garden and fields to the rear.

LPG gas tanks were seen to be aged and beyond their typical service life expectancy. These should be installed by a Gas Safe engineer to confirm that the installations are safe and compliant.

Risks

I3 Risks to people

The traditional size of window openings around the property and the presence of only two external doors to the same elevation limit the escape options in the event of an emergency. Windows are not of an adequate size to be considered emergency egress windows by modern standards and so in the event of a fire or similar emergency, occupants would need to make their way safely to one of the external doors.

Modern properties are typically provided with protected escape routes featuring fire lined walls/ceilings with fire doors to aid safe escape to the external door. This is a specific requirement where roof voids are converted to habitable accommodation. Although the thick stone walls are likely to offer sufficient fire resistance, door openings and floor constructions will not offer the same fire resistance. There may have been some leniency in relation to this requirement offered by the Building Regulations Officer when works were undertaken to the property, but it is more likely that the roof space has been converted and considered not safe for habitable use.

Due to the risks posed by the limited emergency escape from the property, it is vital that smoke detectors and fire alarms within the property are maintained to facilitate early warning to occupants to escape. The smoke alarms should be tested by an approved electrician, and replaced if found to be beyond their recommended service life. Ideally, smoke alarms should be linked to each other so that when one alarm is triggered, all are activated, helping to raise the alarm throughout the property.

It is also recommended that carbon monoxide detectors be installed within all rooms which feature gas appliances to help alert occupants to any danger.

Further consideration should also be given to the access to and from the property. The weathered access road from the main road can be difficult and time consuming for some vehicles to navigate. In the event of an emergency, it may take considerable time for emergency vehicles to reach the property.

We have not undertaken an asbestos survey of this property and it is important to note that any property built prior to the year 2000 may have asbestos materials (ACM's) within it. Given that the property has undergone significant renovation since this date, it is assumed that no such materials would have been used in these works, but previous ACM's may have been covered up and may still be present.

The HSE provides a very helpful website on asbestos, where it can be found and how to manage it - <https://www.hse.gov.uk/asbestos>.

External access around the property is made via traditional stone paths and stairs. There are a number of changes in level which are not offered with any guard rails or hand rails. This creates a number of potential falling risks for young occupants, less able bodied occupants, or those less familiar with the access routes, particularly when it is dark.

Internally, similar risks are posed by old, loose balustrading to the main staircase which may not support a persons weight if they fall and rely on the handrail for support. The repair of this is recommended for this reason (Section E7).

The staircase into the basement lacks a handrail and so again poses a risk to occupants of falling. The small, low level window within the ground floor WC is at risk of accidentally being kicked and breaking. The old glass within this window may then shatter into dangerous pieces. We recommend that the glazing of the window be replaced with toughened safety glazing to reduce this risk.

Risks

I4 Other risks or hazards

The first floor landing at the top of the stairs is supported by old hardwood construction which bears onto the newel post at the corner of the staircase. The load is then transferred down to ground level. The point through which all this load is transferred is small. Although the safe capacity for this to carry traditional loads has been evidently time tested, we would recommend that the weight of furniture and belongings to the first floor landing area outside of Bedroom 4 be kept to a minimum for this reason.

Figure 83 - First floor landing load transferred through newel post of stairs

J

Energy matters

This section describes energy-related matters for the property as a whole. It takes into account a broad range of energy-related features and issues already identified in the previous sections of this report, and discusses how they may be affected by the condition of the property.

This is not a formal energy assessment of the building, but part of the report that will help you get a broader view of this topic. Although this may use information obtained from an available EPC, it does not check the certificate's validity or accuracy.

Energy matters

J1 Insulation

Levels of insulation within the property could not be determined except for within the roof void where a single layer of mineral wool quilt insulation was seen to be laid over the ceiling joists (Figure 32). Due to the lack of access, it was not possible to measure the depth of insulation laid over the ceiling. Modern ceilings would be offered with around 300mm of insulation, laid in two layers. We would therefore recommend that an additional layer of mineral wool quilt insulation be laid over the existing when access is next made into the roof void to help reduce heat loss through the roof.

Due to the conversion of the remaining roof space, it was not possible to determine if insulation has been laid between the ceiling joists below the floors of the Attic Room and Storage Area.

The stud wall separating these rooms from the unused roof space was not insulated and so the partition does not help to prevent heat loss into the unused roof space from the heated Attic Room. If insulation is improved to the unused roof space, we recommend that insulation be fitted between the studs of this partition to reduce heat loss from the Storage Area.

Due to the plastered sloping ceilings in the Attic Room and Storage Area it could also not be confirmed whether insulation has been fitted between the rafters. However, the depth of the exposed purlins seen would suggest that insulation is not provided between the structural roof elements. There is likely to be little insulation offered between the ceiling joists, if any.

Heat loss through these areas of the roof is therefore likely to be significant. To insulate the pitched roof to modern standards, while ensuring sufficient ventilation to the roof structure, a significant loss of headroom in the Attic Room and Storage Area would occur. This may reduce the usability of these spaces.

Equally, improving insulation between the ceiling joists would be disruptive as floors would have to be lifted and re-laid.

In the latter case, the presence of a radiator within the Attic Room would result in heat from this radiator being unrestricted by any insulation, causing a significant reduction in the efficiency of the central heating system.

The presence of ventilation seen at the eaves of the low level pitched roof over Bedroom 3 would suggest that this roof has been constructed with ventilation over insulation. The presence of, and levels of insulation could not be determined without further investigation.

Due to the age of the property, it is assumed that the solid ground floor is not offered with any insulation and so heat is likely to be lost into the ground below.

The presence of a foil backed material could be seen above the plastering where it abutted an exposed timber girder to the ceiling of the Dining Room. This is indicative of a foil backed insulation material being present between the joists of the timber floor above. The thickness or type of insulation present could not be confirmed, nor could it be confirmed if this construction is replicated throughout the property. However, where insulation is present within the first floor construction, it will help to reduce heat loss from ground floor to first floor.

Energy matters

The external walls of the property are expected to lack any insulation. This results in the internal wall surfaces typically being cold and can result in condensation forming where warmer, humid air meets these surfaces. This is most noticeable at the more narrow points in the wall, such as around door and window openings. The internal surfaces of the exposed stone surrounds around windows produced a perfect example of this environment, and could be seen to be black with years of mould/condensation having occurred. This is difficult to manage, but the use of regular ventilation (i.e. opening the windows) will help to reduce humidity levels and lower the risk of this occurring.

Introducing insulation would require internal dry-lining which would increase wall thicknesses further, and would then reduce the internal space of the property, having a considerable impact on the internal layout. This is therefore likely to be seen as an unfavourable alteration by the local planning department/conservation officer.

Windows within the external walls were found to be double glazed but are limited in their efficiency due to the requirement to preserve their traditional appearance. The timber framed units are therefore considered to achieve this balance between traditional appearance and modern insulating standards as successfully as possible.

External doors seek to achieve a similar balance. Although not as efficient thermally as a modern door, the main external door has been fitted with draught seals to attempt to reduce heat loss through this opening. The same seals could be installed to the external door of the kitchen to reduce draughts and heat loss also.

Given the above, we recommend that improvements to roof insulation be considered as much as possible as up to 25% of heat will be lost through the roof and improvements to roof level insulation will be less disruptive to the historical interest of the property than to other elements. If roof coverings are renewed as recommended above, insulation levels would need to be improved as close to modern Building Regulations standards as possible, unless it can be shown that this would have a negative impact upon the historical asset where then some dispensation may be offered for the requirements.

J2 Heating

The property is heated via a modern, efficient condensing combination boiler.

However, the property is large. Combining this with the poor levels of insulation in comparison to a modern property, and its traditionally draughty nature, will result in high energy usage and running costs.

There is no mains gas to the property. The cost of buying gas deliveries combined with a potential standing charge for the gas tanks installed at the property may result in higher energy costs.

The use of log-burning stoves can be relied upon to assist in heating parts of the property where fireplaces are available, and consideration may wish to be given to installing these to fireplaces which are currently redundant for this reason. However, costs for logs can also be significant over time.

The solid nature of the external walls will retain heat once warmed and so keeping the property warm in winter will help some of this energy be released back into the home slowly once the heating is turned off. The energy and therefore cost required to heat the mass of the walls and the large property size will be significant though.

Energy matters

Due to the poor thermal efficiency of the property, it is likely to be unsuitable for modern heating methods, such as air source heat pumps or ground source heat pumps. An MCS certified calculation could be undertaken by an approved installer to determine if such a pump could be installed, but this would then also require planning permission for the modern alteration of a listed building.

If such an installation were deemed suitable and consent obtained, the installation of solar panels could be considered within the grounds of the property to help offset the electrical costs, and to help reduce costs of heating. Combining these with battery storage would help to reduce electricity costs further as this would allow unused electricity created by solar panels to be stored, or allow for potentially cheaper overnight electricity to be stored for use during peak-price periods. The garage is sizeable enough to accommodate battery stores without impacting the external appearance of the property, but planning permission for the installation of solar panels would be required.

If approved, this would help to reduce the overall environmental impact of the property. However, the costs of all these installations is likely to be very high, to the point that savings made on running costs may not offset the cost for the installations.

We therefore recommend that running costs be considered.

J3 Lighting

Lighting within the property is generally a combination of pendant light fittings and spot lights set within ceilings. Lighting is fitted with a combination of LED lamps to some areas, or less efficient halogen lamps to others.

Replacement of all lamps within the property to modern LED units will help to reduce electricity consumption/costs.

J4 Ventilation

A modern extractor hood is fitted over the hob within the kitchen. The extractor was seen to ventilate externally. This will help to reduce humidity created within the kitchen through cooking, but relies on the user to activate the fan. It is recommended that this be operated whenever cooking is taking place. The fan was tested and found to be working, but may require cleaning/servicing.

Extractor fans were found within each bathroom/en-suite. These ventilate through the external walls, or ceiling in the case of the Bedroom 2 en-suite.

Externally, the fans vent to a louvred vent. The vent serving the Master Bedroom en-suite is hidden behind the gutter to the front elevation. This is likely to be intentional so to preserve the traditional appearance of the front elevation. The fan was found to be operating as expected.

The extract fan to the Bedroom 2 en-suite was found to be loose and did not operate when switched on. It could not be determined where this extract fan vents to. We would recommend that the fan be replaced to ensure the en-suite is offered with suitable ventilation when showering etc. The fan should be ensured to be connected to a duct to the external air to remove excess humidity from the building.

Energy matters

The wall mounted extract fan of the main bathroom was found to operate as expected. However, externally, the louvre was seen to be taped. This will restrict air flow from the extract fan and reduce the efficiency of ventilating the bathroom. This may be to prevent the louvre blowing in the wind which may make a noise. If this is the case, we would recommend the louvre be replaced with a new unit which has no moving parts but still prevents water ingress back through the duct.

Figure 84 - Taped louvre to bathroom extract fan

Continuous ventilation was seen to the eaves of the pitched roof over Bedroom 3. This is considered suitable to provide ventilation to the roof construction and is in accordance with modern construction methods.

A lack of ventilation was observed to the main roof void beyond the Storage Area. Nor could ventilation be seen to the eaves of the main roof, indicating that ventilation is not provided to the roof structure above the Attic Room and Storage Area. The lack of ventilation was seen to be causing mould growth within the roof void, with this evident on timbers and on the underside of the underlay. Over time, this can have a negative impact on the structure due to fungal growth, rot and infestation being encouraged by these conditions.

Figure 85 - Mould and condensation seen to roof structure

Ventilation is vital to prevent the build-up of condensation within a roof void. This can be provided either via ventilation products at the eaves and ridge line, or the use of breathable and vapour permeable underlays. Due to the listed status of the building making modern methods of construction unfavourable, we have recommended that the latter option be introduced to ventilate the roof void of this property.

Energy matters

Where roof spaces have been adapted for use, evidence of condensation and higher moisture readings were seen close to the eaves.

Figure 86 - Lower ceiling within roof void at higher risk of condensation forming

This is typically where humid air becomes trapped below the lower purlins and meets the colder sloping surface of the ceiling at these points. This is difficult to mitigate, but the use of regular heating to the external walls at the eaves and the use of as much natural background ventilation as possible (e.g. opening windows) can help to reduce this.

The traditional construction of the property relies on ventilation to reduce moisture levels. This moisture may be from occupation, use (i.e. cooking/bathing), or from natural percolation of moisture through the external envelope. A large quantity of this humidity will be managed by the naturally draughty conditions created by the older construction. Attempts to permanently eliminate draughts through floors and openings may therefore actually be detrimental to the property. Instead, temporary measures (draught excluders) should be used if there is a desire to reduce draughts from a specific area.

The use of extract fans, dehumidifiers and practices such as opening windows as much as possible will help to lower humidity levels within the property and aid the traditional drying of the external walls.

Combining this with heating may seem counter-intuitive, but maintaining a reasonable temperature of the structure itself will help to lower the risk of condensation forming should humid air meet the surfaces of the building. This, combined with the less humid air created by good ventilation methods, will combine to reduce the risks to the property.

J5 General

N/A

K

Surveyor's declaration

Surveyor's declaration

Surveyor's RICS number

[REDACTED]

Phone number

01254 460670

Company

IGL Surveying Ltd

Surveyor's Address

110 Business First Business Centre,
Davyfield Road,
Blackburn,
BB1 2QY

Qualifications

MRICS, IMaPS, BSc(Hons)

Email

info@iglsurveying.co.uk

Website

www.iglsurveying.co.uk

Property address

[REDACTED]
[REDACTED]
[REDACTED]
[REDACTED]
[REDACTED]

Client's name

Date this report was produced

[REDACTED]

[REDACTED]

I confirm that I have inspected the property and prepared this report.

Signature

[REDACTED]

L

What to do now

Further investigations and getting quotes

We have provided advice below on what to do next, now that you have an overview of any work to be carried out on the property. We recommend you make a note of any quotations you receive. This will allow you to check the amounts are in line with our estimates, if cost estimates have been provided.

Getting quotations

The cost of repairs may influence the amount you are prepared to pay for the property. Before you make a legal commitment to buy the property, you should get reports and quotations for all the repairs and further investigations the surveyor may have identified. You should get at least two quotations from experienced contractors who are properly insured.

You should also:

- ask them for references from people they have worked for
- describe in writing exactly what you will want them to do and
- get them to put their quotation in writing.

Some repairs will need contractors who have specialist skills and who are members of regulated organisations (for example, electricians, gas engineers, plumbers and so on). You may also need to get Building Regulations permission or planning permission from your local authority for some work.

Further investigations and what they involve

If we are concerned about the condition of a hidden part of the building, could only see part of a defect or do not have the specialist knowledge to assess part of the property fully, we may have recommended that further investigations should be carried out to discover the true extent of the problem.

This will depend on the type of problem, but to do this properly, parts of the home may have to be disturbed, so you should discuss this matter with the current owner. In some cases, the cost of investigation may be high.

When a further investigation is recommended, the following will be included in your report:

- a description of the affected element and why a further investigation is required
- when a further investigation should be carried out and
- a broad indication of who should carry out the further investigation.

Who you should use for further investigations

You should ask an appropriately qualified person, although it is not possible to tell you which one. Specialists belonging to different types of organisations will be able to do this. For example, qualified electricians can belong to five different government-approved schemes. If you want further advice, please contact the surveyor.

M

Description of the RICS Home Survey – Level 3 service and terms of engagement

Description of the RICS Home Survey – Level 3 service and terms of engagement

The service

The RICS Home Survey – Level 3 service includes:

- a thorough **inspection** of the property (see ‘The inspection’) and
- a detailed **report** based on the inspection (see ‘The report’).

The surveyor who provides the RICS Home Survey – Level 3 service aims to give you professional advice to:

- help you make a reasoned and informed decision when purchasing the property, or when planning for repairs, maintenance or upgrading the property
- provide detailed advice on condition
- describe the identifiable risk of potential or hidden defects
- propose the most probable cause(s) of the defects based on the inspection and
- where practicable and agreed, provide an estimate of costs and likely timescale for identified repairs and necessary work.

Any extra services provided that are not covered by the terms and conditions of this service must be covered by a separate contract.

The inspection

The surveyor carefully and thoroughly inspects the inside and outside of the main building and all permanent outbuildings, recording the construction and defects that are evident. This inspection is intended to cover as much of the property as is physically accessible. Where this is not possible, an explanation is provided in the ‘Limitations on the inspection’ box in the relevant section of the report

The surveyor does not force or open up the fabric of the building. This includes taking up fitted carpets, fitted floor coverings or floorboards; moving heavy furniture; removing the contents of cupboards, roof spaces, etc.; removing secured panels and/or hatches; or undoing electrical fittings.

If necessary, the surveyor carries out parts of the inspection when standing at ground level, from adjoining public property where accessible. This means the extent of the inspection will depend on a range of individual circumstances at the time of inspection, and the surveyor judges each case on an individual basis.

The surveyor uses equipment such as a damp meter, binoculars and torch, and uses a ladder for flat roofs and for hatches no more than 3m above level ground (outside) or floor surfaces (inside) if it is safe to do so.

If it is safe and reasonable to do so, the surveyor will enter the roof space and visually inspect the roof structure with attention paid to those parts vulnerable to deterioration and damage. Although thermal insulation is not moved, small corners should be lifted so its thickness and type, and the nature of underlying ceiling can be identified (if the surveyor considers it safe to do). The surveyor does not move stored goods or other contents.

The surveyor also carries out a desk-top study and makes oral enquiries for information about matters affecting the property.

Description of the RICS Home Survey – Level 3 service and terms of engagement

Services to the property

Services are generally hidden within the construction of the property. This means that only the visible parts of the available services can be inspected, and the surveyor does not carry out specialist tests. The visual inspection cannot assess the efficiency or safety of electrical, gas or other energy sources. It also does not investigate the plumbing, heating or drainage installations (or whether they meet current regulations); or the internal condition of any chimney, boiler or other flue.

Outside the property

The surveyor inspects the condition of boundary walls, fences, permanent outbuildings and areas in common (shared) use. To inspect these areas, the surveyor walks around the grounds and any neighbouring public property where access can be obtained. Where there are restrictions to access (e.g. a creeper plant prevents closer inspection), these are reported and advice is given on any potential underlying risks that may require further investigation.

Buildings with swimming pools and sports facilities are treated as permanent outbuildings and are therefore inspected, but the surveyor does not report on the leisure facilities, such as the pool itself and its equipment internally and externally, landscaping and other facilities (for example, tennis courts and temporary outbuildings).

Flats

When inspecting flats, the surveyor assesses the general condition of the outside surfaces of the building, as well as its access and communal areas (for example, shared hallways and staircases that lead directly to the subject flat) and roof spaces, but only if they are accessible from within and owned by the subject flat. The surveyor does not inspect drains, lifts, fire alarms and security systems.

External wall systems are not inspected. If the surveyor has specific concerns about these items, further investigation will be recommended before making a legal commitment to purchase.

Dangerous materials, contamination and environmental issues

The surveyor does not make any enquiries about contamination or other environmental dangers. However, if the surveyor suspects a problem, they should recommend further investigation.

The surveyor may assume that no harmful or dangerous materials have been used in the construction, and does not have a duty to justify making this assumption. However, if the inspection shows that such materials have been used, the surveyor must report this and ask for further instructions.

The surveyor does not carry out an asbestos inspection and does not act as an asbestos inspector when inspecting properties that may fall within *The Control of Asbestos Regulations 2012* ('CAR 2012'). However, the report should properly emphasise the suspected presence of asbestos containing materials if the inspection identifies that possibility. With flats, the surveyor assumes that there is a 'dutyholder' (as defined in CAR 2012), and that there is an asbestos register and an effective management plan in place, which does not present a significant risk to health or need any immediate payment. The surveyor does not consult the dutyholder.

Description of the RICS Home Survey – Level 3 service and terms of engagement

The report

The surveyor produces a report of the inspection results for you to use, but cannot accept any liability if it is used by anyone else. If you decide not to act on the advice in the report, you do this at your own risk. The report is aimed at providing you with a detailed understanding of the condition of the property to allow you to make an informed decision on serious or urgent repairs, and on the maintenance of a wide range of reported issues..

Condition ratings

The surveyor gives condition ratings to the main parts (the 'elements') of the main building, garage and some outside elements. The condition ratings are described as follows:

- **R** – Documents we may suggest you request before you sign contracts.
- **Condition rating 3** – Defects that are serious and/or need to be repaired, replaced or investigated urgently. Failure to do so could risk serious safety issues or severe long-term damage to your property. Written quotations for repairs should be obtained prior to legal commitment to purchase.
- **Condition rating 2** – Defects that need repairing or replacing but are not considered to be either serious or urgent. The property must be maintained in the normal way.
- **Condition rating 1** – No repair is currently needed. The property must be maintained in the normal way.
- **NI** – Elements not inspected.

The surveyor notes in the report if it was not possible to check any parts of the property that the inspection would normally cover. If the surveyor is concerned about these parts, the report tells you about any further investigations that are needed.

Energy

The surveyor has not prepared the Energy Performance Certificate (EPC) as part of the RICS Home Survey – Level 3 service for the property. Where the EPC has not been made available by others, the surveyor will obtain the most recent certificate from the appropriate central registry where practicable. If the surveyor has seen the current EPC, they will present the energy efficiency rating in this report. Where possible and appropriate, the surveyor will include additional commentary on energy-related matters for the property as a whole in the energy efficiency section of the report, but this is not a formal energy assessment of the building. Checks will be made for any obvious discrepancies between the EPC and the subject property, and the implications will be explained to you. As part of the Home Survey – Level 3 Service, the surveyor will advise on the appropriateness of any energy improvements recommended by the EPC.

Description of the RICS Home Survey – Level 3 service and terms of engagement

Issues for legal advisors

The surveyor does not act as a legal adviser and does not comment on any legal documents. If, during the inspection, the surveyor identifies issues that your legal advisers may need to investigate further, the surveyor may refer to these in the report (for example, to state you should check whether there is a warranty covering replacement windows).

This report has been prepared by a surveyor merely in their capacity as an employee or agent of a firm, company or other business entity ('the Company'). The report is the product of the Company, not of the individual surveyor. All of the statements and opinions contained in this report are expressed entirely on behalf of the Company, which accepts sole responsibility for them. For their part, the individual surveyor assumes no personal financial responsibility or liability in respect of the report, and no reliance or inference to the contrary should be drawn.

In the case of sole practitioners, the surveyor may sign the report in their own name, unless the surveyor operates as a sole trader limited liability company.

Nothing in this report excludes or limits liability for death or personal injury (including disease and impairment of mental condition) resulting from negligence.

Risks

This section summarises defects and issues that present a risk to the building or grounds, or a safety risk to people. These may have been reported and condition rated against more than one part of the property, or may be of a more general nature. They may have existed for some time and cannot be reasonably changed. The RICS Home Survey – Level 3 report will identify risks, explain the nature of the problems and explain how the client may resolve or reduce the risk.

If the property is leasehold, the surveyor gives you general advice and details of questions you should ask your legal advisers.

Description of the RICS Home Survey – Level 3 service and terms of engagement

Standard terms of engagement

1 The service – the surveyor provides the standard RICS Home Survey – Level 3 service described in this section, unless you agree with the surveyor in writing before the inspection that the surveyor will provide extra services. Any extra service will require separate terms of engagement to be entered into with the surveyor. Examples of extra services include:

- schedules of works
- supervision of works
- re-inspection
- detailed specific issue reports
- market valuation and re-instatement cost, and
- negotiation

2 The surveyor – The service will be provided by an AssocRICS, MRICS or FRICS member of the Royal Institution of Chartered Surveyors (RICS) who has the skills, knowledge and experience to survey and report on the property.

3 Before the inspection – Before the inspection, you should tell us if there is already an agreed or proposed price for the property, and if you have any particular concerns about the property (such as a crack noted above the bathroom window or any plans for extension).

This period forms an important part of the relationship between you and the surveyor. The surveyor will use reasonable endeavours to contact you to discuss your particular concerns regarding the property, and explain (where necessary) the extent and/or limitations of the inspection and report. The surveyor also carries out a desktop study to understand the property better.

4 Terms of payment – You agree to pay our fee and any other charges agreed in writing.

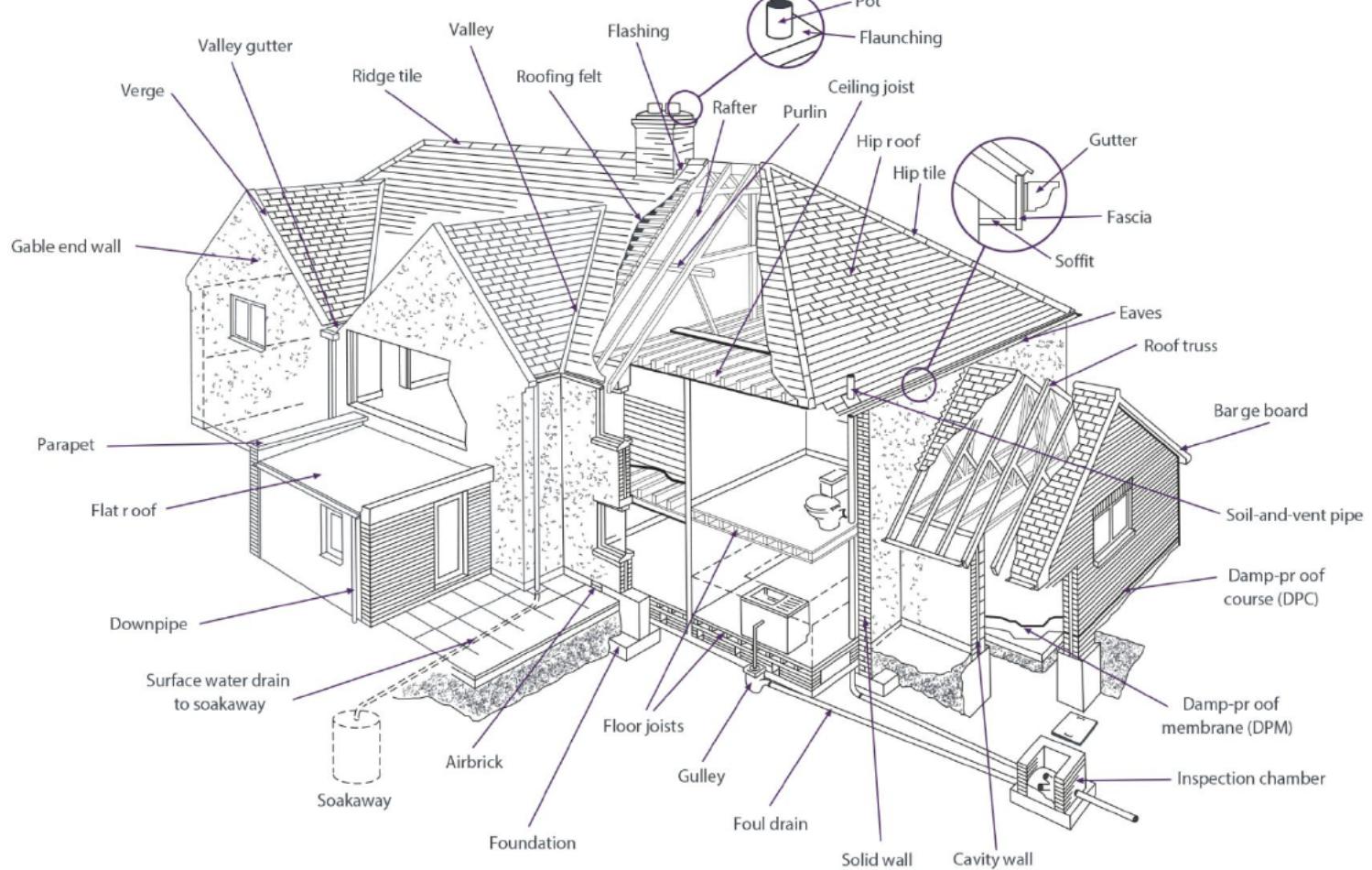
5 Cancelling this contract – You should seek advice on your obligations under *The Consumer Contracts (Information, Cancellation and Additional Charges) Regulations 2013* ('the Regulations') and/or *the Consumer Rights Act 2015* in accordance with section 2.6 of the current edition of the *Home survey standard* RICS professional statement.

6 Liability – the report is provided for your use, and the surveyor cannot accept responsibility if it is used, or relied upon, by anyone else.

Note: These terms form part of the contract between you and the surveyor.

This report is for use in the UK

Complaints handling procedure


The surveyor will have a complaints handling procedure and will give you a copy if you ask for it. The surveyor is required to provide you with contact details, in writing, for their complaints department or the person responsible for dealing with client complaints. Where the surveyor is party to a redress scheme, those details should also be provided. If any of this information is not provided, please notify the surveyor and ask for it to be supplied.

N

Typical house diagram

Typical house diagram

This diagram illustrates where you may find some of the building elements referred to in the report.

Glossary of terms

Airbrick	A brick with holes in it by design, used especially underneath timber floors and in roof spaces, to allow ventilation.
Barge Board	Also known as a 'Verge Board'. A board, usually wooden and sometimes decorative, placed on the edge, or verge, of a roof.
Cavity Wall	A wall built with two sets of bricks or blocks, with a gap, or cavity between them. Cavity is usually about 50mm.
Ceiling Joist	Horizontal piece of wood used to support a floor (above), or attach a ceiling (below). Sometimes also metal.
Damp Proof Course (DPC)	A layer of material that cannot be crossed by damp, built into a wall to prevent dampness rising up the wall, or seeping into windows or doors. Various methods can be used.
Damp Proof Membrane (DPM)	A sheet of material that cannot be crossed by damp, laid in solid floors.
Downpipe	A pipe that carries rainwater from the roof of a building.
Eaves	The overhanging edge of a roof.
Fascia	A board, usually wooden, that runs along the top of a wall underneath the bottom of a sloping roof.
Flashing	Used to prevent water leaking in at roof joints. Normally made from metal, but can also be cement, felt, or other effective material.
Flat Roof	A roof specifically designed to sit as flat as possible, typically having a pitch of no more than 15 degrees. A flat roof usually has the following components: 1. Waterproofing, 2. Insulation, 3. Vapour Barrier, 4. Substrate or sheathing (the surface that the roof is laid on), 5. Joists, and 6. Plasterboard ceiling.
Flaunching	Shaped cement around the base of chimney pots, to keep the pot in place and so that rain will run off.
Floor Joists	Horizontal piece of wood used to support a floor. Sometimes also metal.
Foul Drain	A pipe that conveys sewage or waste water from a toilet, etc, to a sewer
Foundation	Normally made of concrete, a structural base to a wall to prevent it sinking into the ground. In older buildings foundations may be made of brick or stone.
Gable End Wall	The upper part of a wall, usually triangular in shape, at the end of a ridged roof.
Gulley	An opening into a drain, usually at ground level, so that water etc. can be funnelled in from downpipes and wastepipes.

Glossary of terms

Gutter	A trough fixed under or along the eaves for draining rainwater from a roof.
Hip	The outside of the join where two roof slopes connect.
Hip Roof	A roof where all sides slope downwards and are equal in length, forming a ridge at the top.
Hip Tile	The tile covering the hip of a roof, to prevent rain getting in.
Inspection Chamber	Commonly called a man-hole. An access point to a drain with a removable cover.
Parapet	A low wall along the edge of a flat roof, balcony, etc.
Purlin	A horizontal beam in a roof, on which the roof rafters rest.
Rafter	A sloping roof beam, usually wooden, which forms and supports the roof.
Ridge Tile	The tiles that cover the highest point of a roof, to prevent rain getting in.
Roof Truss	A structural framework, usually triangular and made from wood or metal, used to support a roof.
Roofing Felt	A type of tar paper, used underneath tiles or slates in a roof. It can help to provide extra weather protection.
Soakaway	An area for the disposal of rainwater, usually using stones below ground sized and arranged to allow water to disperse through them.
Soffit	A flat horizontal board used to seal the space between the back of a fascia or barge board and the wall of a building.
Soil-and-vent Pipe	Also known as a soil stack pipe. Typically a vertical pipe with a vent at the top. The pipe removes sewage and dirty water from a building, the vent at the top carries away any smells at a safe height.
Solid Wall	A wall with no cavity.
Surface Water Drain	The drain leading to a soakaway.
Valley	Where two roof slopes meet and form a hollow.
Valley gutter	A gutter, usually lined with Flashing, where two roof slopes meet.
Verge	The edge of a roof, especially over a gable.

RICS disclaimer

You should know...

This report has been prepared by a surveyor merely in their capacity as an employee or agent of a firm, company or other business entity ('the Company'). The report is the product of the Company, not of the individual surveyor. All of the statements and opinions contained in this report are expressed entirely on behalf of the Company, which accepts sole responsibility for them. For their part, the individual surveyor assumes no personal financial responsibility or liability in respect of the report, and no reliance or inference to the contrary should be drawn.

In the case of sole practitioners, the surveyor may sign the report in their own name, unless the surveyor operates as a sole trader limited liability company.

Nothing in this report excludes or limits liability for death or personal injury (including disease and impairment of mental condition) resulting from negligence.

This document is issued in blank form by the Royal Institution of Chartered Surveyors (RICS) and is available only to parties who have signed a licence agreement with RICS.

RICS gives no representations or warranties, express or implied, and no responsibility or liability is accepted for the accuracy or completeness of the information inserted into the document, or any other written or oral information given to any interested party or its advisers. Any such liability is expressly disclaimed.